A A+ A++

Biometric techniques and human-computer interfaces

POB2 subarea: Digital images

Biometric techniques and human-computer interfaces

Our non-invasive biometric approaches that include, among others, the algorithms for automatic analysis of eye movement from image sequences, allow us to build increasingly robust and accurate identification and verification systems. The research encompasses machine learning-powered signature verification, handwriting recognition, detection and classification of hand gestures from static and dynamic images, face detection and recognition of human emotions, human re-identification based on facial images, and much more. Also, we develop the virtual- and augmented-reality systems.

 

Contact (email: firstname.lastname@polsl.pl): 

  • Prof. dr hab. Bogdan Smołka (ORCID)
  • Dr hab. inż. Katarzyna Harężlak, Prof. PŚ (ORCID)
  • Dr hab. inż. Paweł Kasprowski, Prof. PŚ (ORCID)
  • Dr hab. Inż. Karolina Nurzyńska, Prof. PŚ (ORCID)
  • Dr inż. Krzysztof Dobosz 
  • Dr inż. Tomasz Grzejszczak 
  • Dr inż. Adrian Kapczyński (ORCID) 
  • Dr inż. Tomasz Moroń 
  • Dr inż. Jacek Szedel 
  • Dr inż. Damian Pęszor 
  • Dr inż. Michał Staniszewski (ORCID) 
  • Dr inż. Przemysław Skurowski 

 

© Silesian University of Technology

General information clause on the processing of personal data by the Silesian University of Technology

The authors - the organizational units in which the information materials were produced, are fully responsible for the correctness, up-to-date and legal compliance with the provisions of the law. Hosted by: IT Center of the Silesian University of Technology ()

Data availability statement

„E-Politechnika Śląska - utworzenie platformy elektronicznych usług publicznych Politechniki Śląskiej”

Fundusze Europejskie
Fundusze Europejskie
Fundusze Europejskie
Fundusze Europejskie