

COURSE OUTLINE

1. COURSE INFORMATION

SCHOOL	Technical University of Crete				
DEPARTMENT	Mineral Resources Engineering				
COURSE LEVEL	Graduate				
COURSE ID		SEMESTER Winter / Spring			
COURSE TITLE	Fundamentals of Mineral Processing				
COURSE MODULES in the case of credits being awarded in distinct parts of the course eg. Lectures, Laboratory Exercises, etc. If credit units are awarded uniformly for the whole course, indicate the weekly hours of teaching and the total number of credits.		INSTRUCTIO HOURS PEF WEEK	DN R CREDITS		
		Lectures	2		
PBL			1		
Laboratories					
Tutorial Exercises					
Total			3	6	
Add rows if needed. The teaching organization and teaching					
methods used are described in detail in (4).					
COURSE TYPE	Core elective	e			
Background, General Knowledge,					
Scientific Area, Skills Development					
PREREQUISITES:	Mineral chemistry - mineralogy, Solid background in applied				
	fluid mechanics				
INSTRUCTION/EXAM LANGUAGE:	English				
THE COURSE IS OFFERED TO	Yes				
ERASMUS STUDENTS:					
COURSE URL:	EURECA-PRO LMS Moodle URL:				
	https://moodle.eurecapro.tuc.gr/course/view.php?id=73				

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course of study in line with the European Higher Education Area Qualifications Framework
- Descriptive Indicators of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
 Learning Outcomes Writing Guide

After completing this course the student will be able to:

- ✓ Design and analyze open/close comminution circuits
- ✓ Define and understand the fundamental principles of mineral processing
- ✓ Calculate the mass balances for mineral processing circuits
- ✓ Analyze and apply the main mineral processing methods, e.g. magnetic and gravity separation, flotation etc., in practical separation tests for various ores
- ✓ Evaluate the performance and efficiency of mineral processing operations
- ✓ Understand the basic principles of fluid particle interactions in the dilute and dense bed limits
- ✓ Design and analyze the operation of fluidized beds for mineral processing

General Competencies/Skills

Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below), which one(s) the course enhances?

Search, analysis and synthesis of data and information, using the necessary technologies Adaptation to new situations Decision making Autonomous work Teamwork Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project design and management Respect for diversity and multiculturalism Respect for the natural environment Demonstration of social, professional and moral responsibility and sensitivity to gender issues Exercise criticism and self-criticism Promoting free, creative and inductive thinking

Search, analysis and synthesis of data and information

Promoting free, creative and inductive thinking

Technology assessment (economic, environmental, social)

Decision making

Teamwork

Working in an interdisciplinary environment

Production of new research ideas

3. COURSE SYLLABUS

Lecture 1: Introduction to mineral processing, particle size & particle size distribution, sieve analysis, screen types, industrial screening, mass balances, exercises

Lecture 2-3: Particle size distribution models, size reduction, comminution machines, exercises

Lecture 4: Open / close circuit operations, mass balances, exercises

Lecture 5-6: Liberation / degree of liberation, mineral processing circuits, mass balances, metal units, recovery, exercises

Lecture 7-8: Optical & magnetic separation, gravity separation, heavy media separation, types of concentrators, exercises

Lecture 9: Froth flotation, collectors, activation and depression mechanisms, flotation cells, flotation circuits, basic principles of settling and classification, exercises.

Lecture 10: Fundamentals of flow past solids- Fluid-solid interactions

Lecture 11: Introduction to the dynamics of fluidized beds

Lecture 12: Reaction Kinetics in fluidized beds

Lecture 13: Numerical simulation of fluidized beds using COMSOL Multiphysics - Hands on practice

4. TEACHING and LEARNING METHODS – ASSESSMENT

LECTURE METHOD Face to face, distance learning, etc.	Face to face, distant learning and PBL: the presence of students in all lectures is obligatory		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY Use of ICT in Teaching, in Laboratory Exercises, in Communication with students	Microsoft Excel and Microsoft Powerpoint will be used during classes and project implementation.		
TEACHING ORGANISATION Describe in detail the way and methods of teaching. Lectures, Seminars, Laboratory Exercise, Field Exercise, Literature review & analysis, Tutoring, Practice (Placement), Clinical Exercise, Artistic	ΑCTIVITY	Workload per semester (in Hours)	
	Lectures	26	
	Tutorials		
	Lab accignments		
Proclice (Procement), Chinical Exercise, Artistic	Lab assignments		
Lab, Interactive teaching, Educational visits,	Projects	26	
Lab, Interactive teaching, Educational visits, Project work, project, etc.	Projects Autonomous study	26 98	

The student's study hours for each learning activity and the hours of non-guided study according to the ECTS principles are mentioned.	Course Total (25 hours' workload/ECTS credit)	150
ASSESSMENT METHODS Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Public Presentation, Laboratory Assignment, Clinical Examination of Patients, Artistic Interpretation, Other Well defined student assessment criteria are mentioned. Mention whether and how the	2 Projects per student (involvi 20' presentation with a ppt file A research article in a relevant each student. A ~3 page sumn be prepared, involving critical	ng teamwork) through PBL. e, Q&A: 60% t topic will be prepared by nary and ppt presentation will analysis of the topic: 40%
students can access them.		

5. DIGITIZATION (use of tools & software)

Students are required to perform calculations in Microsoft Excel spreadsheets (mass balance, economic and energy indicators etc) using the relevant tools and also prepare ppt presentations. The use of COMSOL Multiphysics will be demonstrated for the modeling of flow and reaction kinetics in fluidized beds.

6. RECOMMENDED INTERNATIONAL LITERATURE

- Wills, B.A.; Finch, J.A. 2016. Wills Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, Butterworth-Heinemann Publishers, Oxford, UK.
- Fuerstenau, M.C.; Han, K.N. 2003. Principles of Mineral Processing, Society for Mining, Metallurgy, and Exploration, USA.
- Allen, T. 2003. Powder Sampling and Particle Size Determination; Elsevier: Amsterdam, The Netherlands.
- Petrakis, E.; Stamboliadis, E.; Komnitsas, K. 2017. Identification of optimal mill operating parameters during grinding of quartz with the use of population balance modeling. KONA Powder and Particle Journal 34, 213-223.
- Petrakis, E.; Komnitsas, K. 2019. Effect of energy input in a ball mill on dimensional properties of grinding products. Mining, Metallurgy & Exploration, 36 (4), 803-816.
- Petrakis E., Karmali V., Komnitsas K. 2021. Factors affecting nickel upgrade during selective grinding of low-grade limonitic laterites. Mineral Processing and Extractive Metallurgy, 130 (3), 192-201
- Petrakis, E.; Komnitsas, K. 2021. Development of a non-linear framework for the prediction of the particle size distribution of the grinding products. Mining, Metallurgy & Exploration, 38 (2), 1253-1266.
- Transport Phenomena, Revised 2nd Edition, R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, WILEY
- Fluidized-Bed Reactors: Processes and Operating Conditions, John G. Yates and Paola Lettier, SPRINGER

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contractnumber: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

