

COURSE OUTLINE

1. COURSE INFORMATION

SCHOOL	Chemical ad Environmental Engineering				
DEPARTMENT					
COURSE LEVEL	Postgraduate				
COURSE ID	SEMESTER Spring				
COURSE TITLE	Climate Change Impact Assessment				
COURSE MOD	COURSE MODULES				
in the case of credits being awarded in distinct parts of the course		INSTRUCTIO	N		
eg. Lectures, Laboratory Exercises, etc	. If credit units are awarded		HOURS PER	2	CREDITS
uniformly for the whole course, inc	ndicate the weekly hours of WEEK				
teaching and the total number of crea	lits.				
		s and Tutorials	3		9
Add rows if needed. The teaching organization and teaching					
methods used are described in detail					
COURSE TYPE	Special Background and Skills Development				
Background, General Knowledge,					
Scientific Area, Skills Development					
PREREQUISITES:	There are no prerequisite courses.				
	The student is expected to have an adequate background on				
	mathematics, physics/engineering, and basic skills on data				
	processing (e.g. basic operations in excel). Some familiarity with programming (standard equivalent to a				
	first-year science undergraduate programming module) and				
	GIS would be advantageous but is not essential.				
INSTRUCTION/EXAM LANGUAGE:	English				
THE COURSE IS OFFERED TO	Yes				
ERASMUS STUDENTS:					
COURSE URL:	EURECA PRO LMS Moodle URL:				
	https://moodle.eurecapro.tuc.gr/course/view.php?id=80				

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course of study in line with the European Higher Education Area Qualifications Framework
- Descriptive Indicators of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
- Learning Outcomes Writing Guide

After completing this course, the student will be able to:

Knowledge & Understanding:

- Comprehend the foundational concepts of climate science and the implications of a changing climate on both global and localized scales.
- Understanding key methodologies and principles of climate change impact assessment.
- Dissect and comprehend IPCC statements, reports, and findings.

Practical & Technical Skills:

• Source, extract, and interpret fit-for-purpose climate data for impact assessments, using a variety of tools and platforms.

• Apply hands-on techniques such as downscaling, adjustment, and processing of climate data to predict potential impacts.

Analytical & Problem-Solving Skills:

• Design and execute a CCIA project, from initial brainstorming to final presentation, integrating observational data, model outputs, and real-world applications.

Communication & Presentation Skills:

- Communicate scientific findings clearly and effectively.
- Present research projects coherently, integrating data, analyses, and implications into a structured presentation.

General Competencies/Skills

Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below), which one(s) the course enhances?

Search, analysis and synthesis of data and information,	Project design and management
using the necessary technologies	Respect for diversity and multiculturalism
Adaptation to new situations	Respect for the natural environment
Decision making	Demonstration of social, professional and moral responsibility and
Autonomous work	sensitivity to gender issues
Teamwork	Exercise criticism and self-criticism
Working in an international environment	Promoting free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	
• Search, analysis and synthesis of data and in	nformation, using the necessary technologies.

- Promoting free, creative and inductive thinking.
- Autonomous work.
- Working in an interdisciplinary environment.
- Awareness of the importance of the natural environment.

3. COURSE SYLLABUS

The CCIA course delves deep into the multifaceted effects of climate change on natural and human systems. Recognizing the gravity of current global climate challenges, the course equips students with the necessary tools and methodologies to evaluate the potential consequences of a changing climate on various sectors, such as agriculture, water resources, health, and urban planning. It combines scientific understanding with practical implications, focusing on both qualitative and quantitative assessment techniques. Students will learn the importance of local and global scale assessments, as well as the integration of socio-economic scenarios with climate change projections. Emphasis will be given to vulnerability and adaptation strategies, recognizing that climate change impact assessment is not only about understanding consequences but also preparing for them. Through a blend of theoretical knowledge, case studies, and hands-on exercises, learners will be well-prepared to contribute constructively to the climate change discourse and action plans in academic, governmental, or private sectors.

Syllabus:

<u>Synabus.</u>	
1st Week:	Introduction to climate change and impact modelling.
2nd Week:	The IPCC organization and the 6 th assessment report on impacts adaptation and vulnerability. AR6 Interactive session: Find your own meaning in a Headline Statement
	1 st Assignment: delve into an IPCC Headline Statement (group assignment)
3rd Week:	Key concepts for Assessing Climate Change Impact.
	Presentation of the 1 st assignment
4th Week:	Climate Change Impacts: A Global and European Perspective
	The IPCC interactive Atlas.
	2 nd Assignment: IPCC WG1 AR6 Interactive ATLAS (individual assignment)
5th Week:	Climate Change Impacts: A local scale Perspective
	Presentation of the 2 nd assignment

6th Week:	CCIA Projects Prospectus, roundtable discussion
	3 rd Assignment: Interpreting Climate Science: A Journal Paper Presentation (group
	assignment)
7th Week:	Climate model data: Sources, formats, software and repositories. The Copernicus
	Climate Data Store. Hands-on 1: Obtaining fit-for-purpose data for impact
	assessment.
8th Week:	Hands-on 2: The Climate Data Operator (CDO), installation
9th Week:	Hands-on 3: The Climate Data Operator (CDO), basic operations
10th Week:	Hands-on 4: Processing data for impact assessments (downscaling and impact
	modelling)
11th Week:	Presentation of the 3 rd assignment
12th Week:	Detection and Attribution of Climate Change impacts
13th Week:	Project presentations and discussion

4. TEACHING and LEARNING METHODS – ASSESSMENT

LECTURE METHOD	Hybrid (Face to face and Distance learning)		
Face to face, distance learning, etc.			
USE OF INFORMATION AND	Moodle learning platform		
COMMUNICATION TECHNOLOGY	Zoom communication platform		
Use of ICT in Teaching, in Laboratory Exercises,			
in Communication with students		-	
TEACHING ORGANISATION Describe in detail the way and methods of	ΑCTIVITY	Workload per semester (in Hours)	
teaching. Lectures, Seminars, Laboratory Exercise, Field	Lectures	30	
Exercise, Literature review & analysis, Tutoring, Practice (Placement), Clinical Exercise, Artistic	Practical classes and workshops	9	
Lab, Interactive teaching, Educational visits,	Autonomous study	58	
Project work, project, etc.	Assignments/tasks	62	
	Projects	66	
The student's study hours for each learning	Course Total		
activity and the hours of non-guided study	(25 hours' workload/ECTS	225	
according to the ECTS principles are mentioned.	credit)		
ASSESSMENT METHODS			
Description of the evaluation process	Assignments (40%)		
Assessment Language, Assessment Methods,	Final project report (40%)		
Formative or Concluding, Multiple Choice Test,	Project presentation and discussion (20%)		
Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Public Presentation, Laboratory Assignment, Clinical Examination of Patients, Artistic Interpretation, Other			
Well defined student assessment criteria are mentioned. Mention whether and how the students can access them.			

5. DIGITIZATION (use of tools & software)

- Climate Data Operator (CDO)

- Data processing and analysis software

RECOMMENDED INTERNATIONAL LITERATURE 6.

- Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z., & Wei, L. (2021). AR6 climate change 2021: The physical science basis.
- Pörtner, H. O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., ... & Fischlin, A. (2022). Climate change 2022: Impacts, adaptation and vulnerability. IPCC Sixth Assessment Report.
- Feenstra, J. F., Burton, I., Smith, J. B., & Tol, R. S. (1998). Handbook on methods for climate change impact assessment and adaptation strategies.
- Parry, M., Nishioka, S., Harasawa, H., & Carter, T. (1996). Technical guidelines for assessing climate change impacts and adaptations.

Further readings of selected material as indicated in the individual lecture presentations (reports and scientific publications).

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contract number: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

