

COURSE OUTLINE

1. COURSE INFORMATION

SCHOOL	Chemical and Environmental Engineering				
DEPARTMENT					
COURSE LEVEL	Postgraduate				
COURSE ID		SEMESTER Winter			
COURSE TITLE	Solid and Toxic Waste Management				
COURSE MODULES					
in the case of credits being awarded in	n distinct part	INSTRUCTION			
eg. Lectures, Laboratory Exercises, etc	tc. If credit units are awarded HOURS PER CREDITS				
uniformly for the whole course, inc	urse, indicate the weekly hours of WEEK				
teaching and the total number of crea	its.				
	Lectures		2		
Laboratories					
Tutorial Exercises		1			
Total		3		5	
Add rows if needed. The teaching organization and teaching					
methods used are described in detail in (4).					
COURSE TYPE	General kno	wledge, Scientif	ic area		
Background, General Knowledge,					
Scientific Area, Skills Development					
PREREQUISITES:	Basic biology, chemistry, and geochemistry knowledge				
INSTRUCTION/EXAM LANGUAGE:	English				
THE COURSE IS OFFERED TO	Yes				
ERASMUS STUDENTS:					
COURSE URL:	EURECA PRO LMS Moodle URL:				
	https://moodle.eurecapro.tuc.gr/course/view.php?id=81				

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

After completing this course, the student will be able to:

- Understand basic principles on solid and hazardous waste management
- Apply the best approach based on waste properties and characteristics
- Design collection and transportation systems
- Estimate the landfill size or treatment facilities for specific case studies
- Determination of physicochemical characteristics of degradation products (landfill leachate, biogas)
- Perform risk assessment

General Competencies/Skills

Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below), which one(s) the course enhances?

- Search, analysis and synthesis of data and information, using the necessary technologies
- Autonomous work
- Teamwork
- Working in an international environment

- Working in an interdisciplinary environment
- Production of new research ideas

3. COURSE SYLLABUS

- 1st Week: Introduction to Integrated Solid Waste Management
- 2nd Week: Reduce, Reuse, Recycle, Recovery... The Rs of Solid Waste Management
- 3rd Week: Biological Conversion Technologies (aerobic composting)
- 4th Week: Biological Conversion Technologies (anaerobic digestion)
- 5th Week: Thermal Conversion Technologies (incineration)
- 6th Week: Advanced Thermal Systems (pyrolysis, gasification, air pollution control)
- 7th Week: Waste disposal
- 8th Week: Landfill design
- 9th Week: Hazardous waste: Main characteristics, classification, labeling, toxicology and risk analysis
- 10th Week: Physico-chemical and thermal treatment of hazardous waste
- 11th Week: Disposal of hazardous waste
- 12th Week: Dioxins (PCDDs), Furans (PCDFs) and Polychlorinated Biphenyls (PCBs)
- 13th Week: Project presentation and discussion

4. TEACHING and LEARNING METHODS – ASSESSMENT

LECTURE METHOD	Distance learning			
Face to face, distance learning, etc.				
USE OF INFORMATION AND	Power point presentations; Moodle support			
COMMUNICATION TECHNOLOGY				
Use of ICT in Teaching, in Laboratory Exercises, in Communication with students				
TEACHING ORGANISATION		Workload per semester (in		
Describe in detail the way and methods of	ΑCTIVITY	Hours)		
teaching. Lectures, Seminars, Laboratory Exercise, Field	Lectures	26		
Exercise, Literature review & analysis, Tutoring,	Tutorials	13		
Practice (Placement), Clinical Exercise, Artistic	Assignment and Project	26		
Lab, Interactive teaching, Educational visits, Project work, project, etc.	Autonomous study	60		
The student's study hours for each learning activity and the hours of non-guided study according to the ECTS principles are mentioned.	Course Total (25 hours' workload/ECTS credit)	125		

ASSESSMENT METHODS Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Public Presentation, Laboratory Assignment, Clinical Examination of Patients, Artistic Interpretation,	 Oral exam (50%) Final project report (25%) Project presentation and discussion (25%)
Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Public Presentation, Laboratory Assignment, Clinical	
Well defined student assessment criteria are mentioned. Mention whether and how the students can access them.	

5. DIGITIZATION (use of tools & software)

Power point presentation

6. RECOMMENDED INTERNATIONAL LITERATURE

- Tchobanoglous G., Kreith F. (2002) Handbook of Solid Waste Management (2nd Ed.). McGraw-Hill, USA.
- Chandrappa R., Das D.B. (2012) Solid Waste Management: Principles and Practice. Springer, Germany.
- Unnisa S.A, Rav S.B. (2012) Sustainable Solid Waste Management. Taylor & Francis, USA.
- Christensen T.H. (2011) Solid Waste Technology and Management. Wiley, UK.

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contract number: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

