

COURSE OUTLINE

1. COURSE INFORMATION

SCHOOL	Chemical and Environmental Engineering				
DEPARTMENT					
COURSE LEVEL	Graduate				
COURSE ID	BEKA 300	SEMESTER Winter			
COURSE TITLE	Climate Change and GHG Emissions				
COURSE MODULES					
in the case of credits being award	ed in distinct	t parts of the	INSTRUCTIO	N	
course eg. Lectures, Laboratory Exerc	cises, etc. if c	realt units are	HOURS PER	CREDITS	
awarded uniformly for the whole course, indicate the weekly			WEEK		
	loctures 2 0				
		Laboratorios	3	9	
		3			
Add rows if needed. The teaching organization and teaching					
methoas used are described in detail in (4).					
COURSE ITPE	васкугоипа				
Scientific Area Skills Development					
	Pasie knowledge in calculus				
	English				
	res				
COOKSE OKE.					
	nttps://moodie.eurecapro.tuc.gr/course/view.php?id=84				

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course of study in line with the European Higher Education Area Qualifications Framework
- Descriptive Indicators of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
- Learning Outcomes Writing Guide

Upon successful completion of this course the students will acquire new knowledge and specific skills on the following subjects:

- Will have knowledge of the basic characteristics of the Earth's atmosphere (structure, density, temperature lapse rate, pressure and energy balance).
- Will have knowledge of the composition of the atmosphere
- Will have knowledge of the impact of the greenhouse effect to the temperature balance of the planet.
- Will have knowledge of the basic characteristics of particulate matter (density, chemical properties, size and sources).
- Will be capable to use the basic principles of the Eulerian and Lagrangian air quality models to calculate the concentration of pollutants in air.
- Will be able to apply Gaussian models for the calculation of air pollutants concentration.
- Will have knowledge to use simple models for calculating the carbon foot print from houses and

European University on Responsible Consumption and Production

industrial facilities

- Will be able to apply simple climate models for the calculation of GHG levels and emissions
- Will have knowledge of the air quality and climate legislation concerning gaseous and particulate matter pollutants.

General Competencies/Skills

Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below), which one(s) the course enhances? Search, analysis and synthesis of data and information, Project design and management

using the necessary technologies Adaptation to new situations Decision making Autonomous work Teamwork Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project design and management Respect for diversity and multiculturalism Respect for the natural environment Demonstration of social, professional and moral responsibility and sensitivity to gender issues Exercise criticism and self-criticism Promoting free, creative and inductive thinking

• Adaptation ability

- Decision making
- Respect of the Environment
- Advance free, creative and causative thinking

3. COURSE SYLLABUS

The course aims to the analysis and formulation of design criteria for the application of measures for the reduction of greenhouse gas (GHG) emissions in the atmosphere. It is also formulates the calculation of GHG emissions from anthropogenic and natural sources. Air pollutants and aerosols are also studied together with mathematical dispersion models, as well as, climatic models. In addition, the energy balance in Earth is studied using mathematical models. Finally, the course includes a number of laboratory exercises.

<u>Syllabus</u>

- 1st week: Atmospheric structure and composition
- <u>2nd week</u>: Air pollutants
- <u>**3rd week**</u>: Radiation in the atmosphere. Greenhouse effect
- <u>4th week</u>: Energy balance and climate
- 5th week: Emissions of gaseous components and aerosols. Air pollution dispersion
- 6th week: Atmospheric chemistry and climate
- 7th week: Atmospheric aerosols and effects on visibility and climate
- 8th week: Climate Characteristics
- <u>9th week</u>: Single cell models. Climate models
- 10th week: GHG pollutants
- 11th week: Formulation of an emission inventory
- 12th week: Project for the calculation of the Carbon dioxide in the atmosphere
- 13th week: Project for the calculation of the Carbon footprint

4. TEACHING and LEARNING METHODS – ASSESSMENT

LECTURE METHOD Face to face, distance learning, etc.	Face to face in conjunction with distance learning
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY	Use of ICT in Teaching and Laboratory Exercises
Use of ICT in Teaching, in Laboratory Exercises, in Communication with students	

TEACHING ORGANISATION Describe in detail the way and methods of	ΑCTIVITY	Workload per semester (in Hours)			
teaching. Lectures, Seminars, Laboratory Exercise, Field	Lectures	39			
Exercise, Literature review & analysis, Tutoring,	Tutorials				
Lab, Interactive teaching, Educational visits,	Lab assignments Projects	10			
Project work, project, etc.	Autonomous study	135			
The student's study hours for each learning activity and the hours of non-guided study according to the ECTS principles are mentioned					
according to the Lers principles are mentioned.	Course Total (25 hours' workload/ECTS credit)	225			
ASSESSMENT METHODS					
Description of the evaluation process	1. Lab reports (10%)				
Assessment Language, Assessment Methods,	2. Written assignments (20%)				
Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development	3. Project (35%)				
Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Public Presentation, Laboratory Assignment, Clinical Examination of Patients, Artistic Interpretation, Other	4. Final exam (35%)				
Well defined student assessment criteria are mentioned. Mention whether and how the students can access them.					

5. DIGITIZATION (use of tools & software)

- European GHGCalculator
- BoxModel_CO2
- Sgec_tool

6. RECOMMENDED INTERNATIONAL LITERATURE

- 1. Seinfeld J. H. and Pandis, S. N. Atmospheric Chemistry and Physics John Wiley & Sons (2006).
- 2. IPCC Fifth Assessment Report(http://www.ipcc.ch/report/ar5/wg1).
- 3. Mihalis Lazaridis. First Principles of Meteorology and Air Pollution. Springer (2010).

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contractnumber: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

