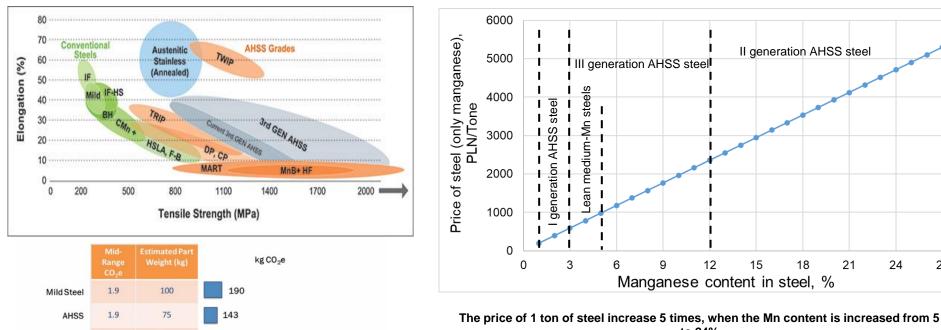


EFFECT OF A MANGANESE CONTENT ON THE KINETICS OF NANOBAINITE FORMATION IN MEDIUM-MN STEELS WITH RETAINED AUSTENITE

<u>Mateusz Morawiec¹</u>


Adam Grajcar²

¹ Silesian University of Technology, Faculty of Mechanical Engineering, Materials Research Laboratory, 18a Konarskiego Street, 44-100 Gliwice, Poland;

² Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, 18a Konarskiego Street, 44-100 Gliwice, Poland;

ESOMAT 2024

INTRODUCTION

to 24%

Figure 9. LCA Emissions from Material Production

596

990

2300

67

50

45

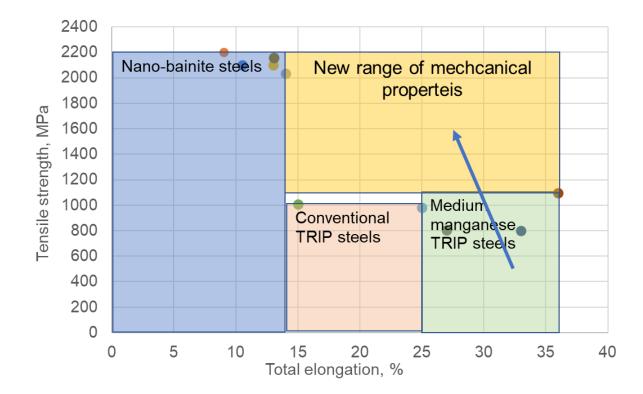
8.9

46

22

Aluminum

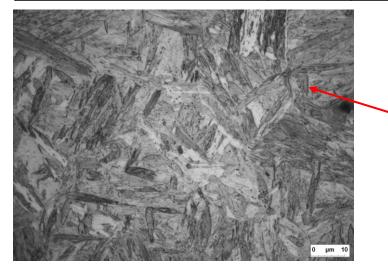
Magnesium

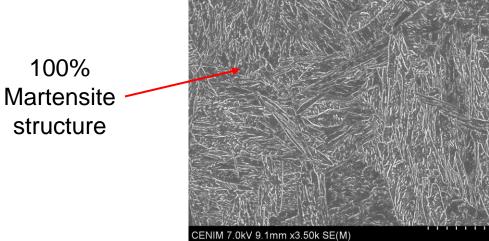

CFRP

ESOMAT 2024 13th European Symposium on Martensitic Transformation 26 - 30 August 2024, Lecco - Italy

27

INTRODUCTION

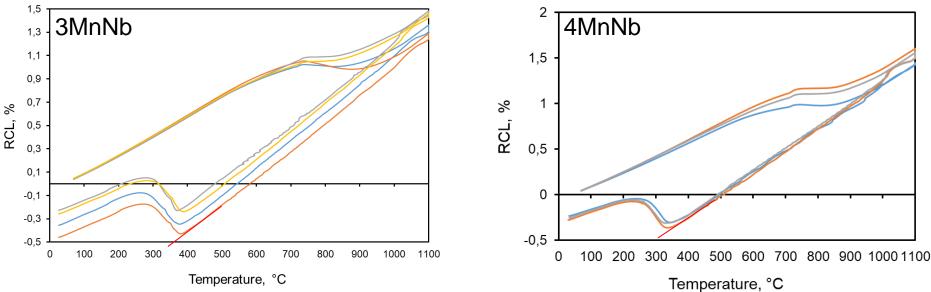



ESOMAT 2024

MATERIAL

Steel grade	С	Mn	ΑΙ	Si	Мо	Nb
3MnNb steel	0.17	3.1	1.6	0.20	0.20	0.04
4MnNb steel	0.17	3.6	1.6	0.20	0.20	0.04

Silesian University of Technology


ESOMAT 2024

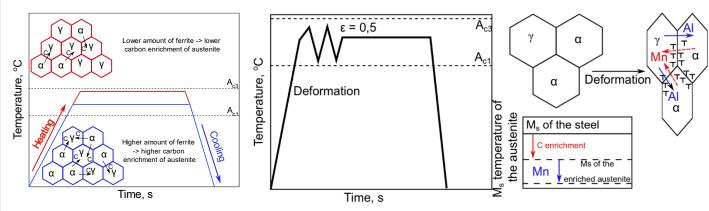
13th European Symposium on Martensitic Transformation 26 - 30 August 2024, Lecco - Italy

10.0um

INITIAL RESEARCH – DETERMINATION OF Ms TEMPERATUE

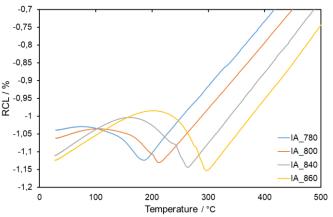
	Ms of the steel, °C				
3MnNb	390 ± 7				
4MnNb	356 ± 5				

To high Ms temperature for nanobainite formation!



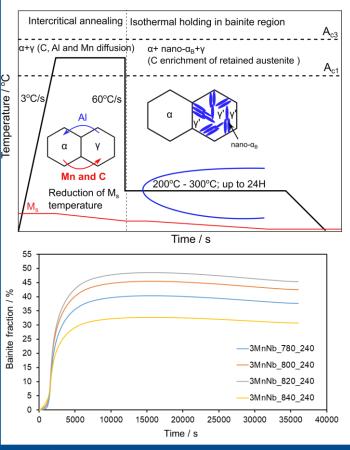
ESOMAT 2024 13th European Symposium on Mantonaitin Transformation

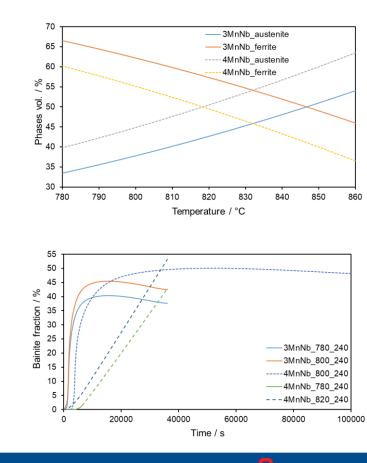
Martensitic Transformation 26 - 30 August 2024, Lecco - Italy



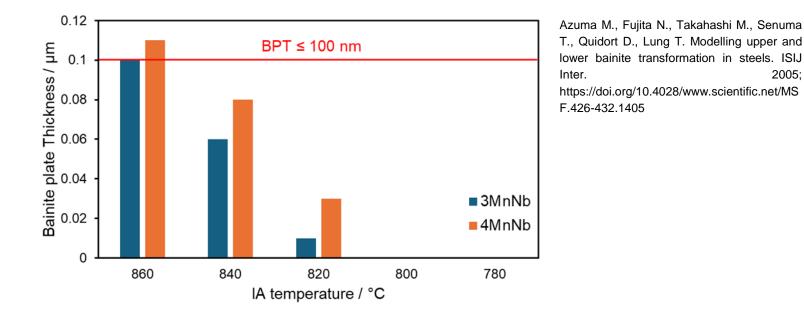
WAYS TO INCREASE THE THERMAL STABILITY OF AUSTENITE

Austenite thermal stability controlled by the chemical composition Austenite thermal stability controlled by the plastic deformation and grain refinement


IA, °C	780	800	840	860
3MnNb Ms, °C	170	210	270	295
4MnNb Ms, °C	160	195	260	280



THEORETICAL CALCULATIONS

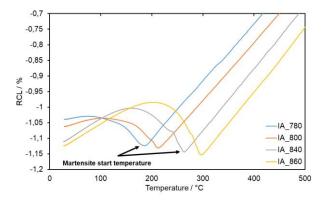


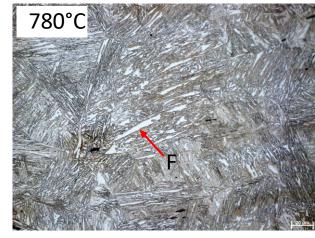
Silesian University of Technology ESOMAT 2024 13th European Symposium on Martensitic Transformation

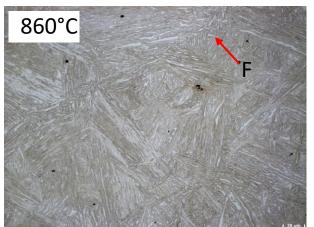
26 - 30 August 2024, Lecco - Italy

THEORETICAL CALCULATIONS – BAINITE PLATE THICKNESS

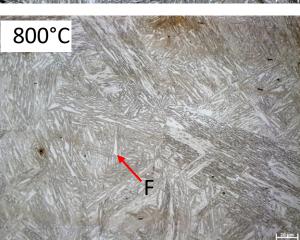
 $w_{\alpha_B} = 0.478 + 1.20 \times 10^{-4}T + 1.25 \times 10^{-4} \Delta G_{max}^{\gamma \to \alpha} - 2.20 \times 10^{-3} S_{\gamma}$

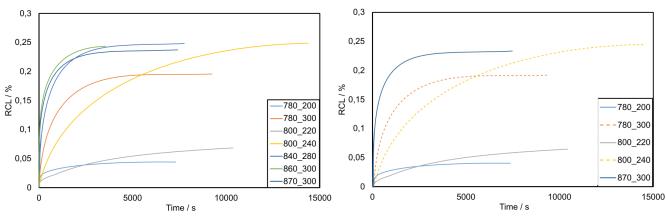

$$\begin{split} S_{\gamma} &= [1 - 0.26 \times 10^{-2} (T - 25) + 0.47 \times 10^{-5} (T - 25)^2 - 0.326 \times 10^{-8} (T - 25)^3] \times \\ & 15.4 (3.6 + 23C + 1.3Si + 0.65Mn) \end{split}$$

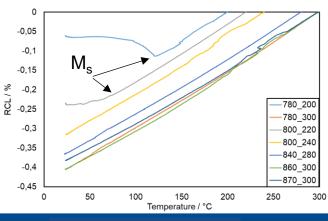



ESOMAT 2024



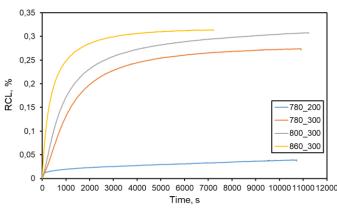

DILATOMETRY STUDY - IA



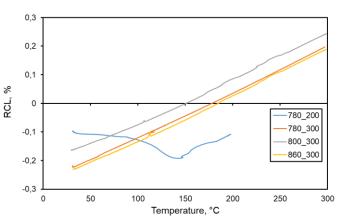


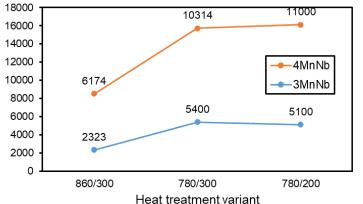
DILATOMETRIC STUDY – NANOBAINITE FORMATION 3MnNb STEEL

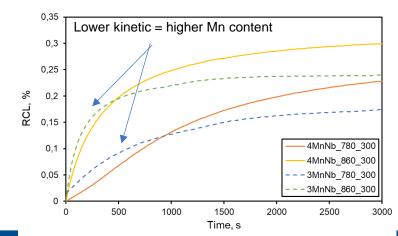
The IBT around 200 °C, exhibit sluggish transformation kinetic for independently of the IA temperature. Together with increase of IBT temperature, the transformation is much faster and more nanobainite is forming.


For low IBT temperatures, the formation of martensite was detected. Which means that the austenite was not fully stabilized during the nanobainite formation

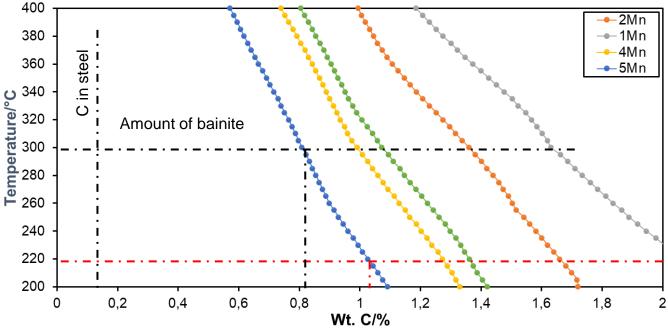
ESOMAT 2024 13th European Symposium on


DILATOMETRIC STUDY – NANOBAINITE FORMATION 4MnNb STEEL


Comparing the 4MnNb with 3MnNb steel the steel, it can be seen that formation the of Πm nanobainite is much slower. The difference in time of the transformation finish is around 2.5 higher.

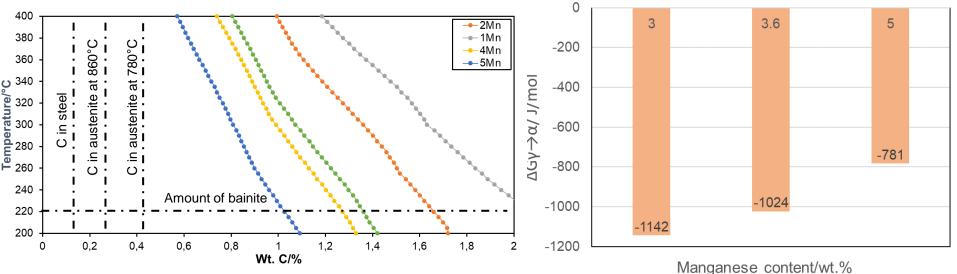

S

۵,


Moreover, the kinetic of the transformation at the beginning is lower for 4MnNb steel, and it up after some speed time. This speed up to higher correspond fraction austenite that can undergo nanobainite formation.

MANGANESE INFLUENCE ON BAINITE FORMATION KINETIC

Manganese decreases the amount of bainite, by decreasing the equilibrium carbon concentration in austenite


A decrease of isothermal holding temperature results in the increase of equilibrium carbon concentration in austenite

Temp. [°C] 860		AI [wt.%]	Mn [wt.%]	Mo [wt.%]	Nb [wt.%]	Si [wt.%]	C [wt.%]
860	94 153087	1 000000					
	51,100007	1,363202	3,826821	0,184148	0,000197	0,205275	0,26727
840	93,950813	1,319163	4,04244	0,182759	0,000125	0,206326	0,298374
820	93,707943	1,277219	4,29103	0,18213	0,000078	0,207366	0,334234
800	93,416821	1,237621	4,579343	0,182343	0,000048	0,208423	0,375401
780	93,067285	1,200506	4,916719	0,183479	0,000029	0,209568	0,422414
ESOMAT 2024							
	820 800 780	820 93,707943 800 93,416821 780 93,067285	820 93,707943 1,277219 800 93,416821 1,237621	82093,7079431,2772194,2910380093,4168211,2376214,57934378093,0672851,2005064,916719	82093,7079431,2772194,291030,1821380093,4168211,2376214,5793430,18234378093,0672851,2005064,9167190,183479	82093,7079431,2772194,291030,182130,00007880093,4168211,2376214,5793430,1823430,00004878093,0672851,2005064,9167190,1834790,000029	82093,7079431,2772194,291030,182130,0000780,20736680093,4168211,2376214,5793430,1823430,0000480,20842378093,0672851,2005064,9167190,1834790,0000290,209568

CARBON INFLUENCE ON BAINITE FORMATION KINETIC

Carbon concentration in austenite after IA, strongly influences the amount of bainite

Silesian University of Technology

Temp. [°C]	Fe [wt.%]	AI [wt.%]	Mn [wt.%]	Mo [wt.%]	Nb [wt.%]	Si [wt.%]	C [wt.%]
860	94,153087	1,363202	3,826821	0,184148	0,000197	0,205275	0,26727
840	93,950813	1,319163	4,04244	0,182759	0,000125	0,206326	0,298374
820	93,707943	1,277219	4,29103	0,18213	0,000078	0,207366	0,334234
800	93,416821	1,237621	4,579343	0,182343	0,000048	0,208423	0,375401
780	93,067285	1,200506	4,916719	0,183479	0,000029	0,209568	0,422414
ESOMAT 2024 13th European Symposium on Martensitic Transformation 26 - 30 August 2024, Lecco - Italy						RESEARCH UNIVERSITY UNIVERSITY	

Conclusions

- 1. Two step heat treatment allows for the formation of bainite at lower isothermal holding temperatures without martensite (in most cases). It is possible to form nanobainite at the temperatures from 200 to 300°C,
- 2. Decreasing the IA temperature, results in the lower bainite amount after isothermal holding. This correspond to the amount of austenite and its chemical composition prior to the isothermal holding,
- 3. As the IA temperature increase, the nanobainite transformation kinetics accelerate too. The fastest transformation occurs at the IA temperatures of 840, 860 and 870°C,
- 4. The manganese content has a big impact on the kinetic of nanobainite formation. For 4MnNb steel, the kinetic is much slower, however it is possible to form more nanobianite, as more austenite is available before IBT.
- 5. The proposed heat treatment, need to be optimized, as not only manganese but also carbon strongly influence the kinetic of the nanobainite formation as well the amount of it.

ESOMAT 2024

Thank you for your attention,

ACKNOWLEDGEMENTS

The financial support of the National Science Center, Poland, is gratefully acknowledged, grant no. 2021/41/N/ST8/03371

NARODOWE CENTRUM NAUKI

ESOMAT 2024

