

Civil Engineering Faculty

1. Course number and name

RB-S1-19-W26-32, Selected engineering problems - Mechanics of Materials

2. Credits and contact hours*

5 ECTS, lectures: 30 hours**, classes: 3 hours**, project: 35 hours**

3. Instructor's or course coordinator's name

Tomasz Krykowski PhD, DSc/University Professor

4. Text book, title, author, and year

- Timoshenko S.: Strength of Materials, vol. 1, Elementary Theory and Problems, 2004,
- Timoshenko S.: Strength of Materials, vol. 2, Advanced Theory and Problems, 2004,
- Hearn S. J.: Mechanics of Materials, Butterworth Heinemann, Oxford 2000,
- Gere J.M., Goodno B.J.: Mechanics of Materials, Brief Edition, Cengage Learning, 2011.

5. Specific course information

a. brief description of the content of the course (catalog description)

Lectures:

- (1) Basic physical models of the mechanic of deformable body constitutive models,
- (2) Basis cases of mechanics of materials, (3) Deflection of beams, (4) Theory of stress and strain, material effort hypothesis (5) Basic stability problems.

Classes:

(1) Calculating displacements of simple bar elements using differential equation of the bent axis, (2) Determining the critical force in elements under compression. Project:

There are six projects to perform: Project No 1 – Determining reactions, displacements and preparing the cross section design in statically indeterminate element under axial compression-tension stress, Project No 2 – The design of beam cross section with reference to bending and determining the distribution of shear stresses in the beam cross section,

Project No 3 – Determining the location of neutral axis and designing the cross section of the element under the skew bending, Project No 4 – Determining the position of a neutral axis and the distribution of stresses in the element under the eccentric compression, Project No 5 – Designing the cross section, determining stresses and the angle of rotation of a statically indeterminate element subjected to torsion, Project No 6 – Determining components of stress and strain tensors, their principal directions and values in the beam element under bending.

b. prerequisites or co-requisites

No prerequisites and additional requirements

c. indicate whether a required, elective, or selected elective (as per Table 5-1) course in the program

Civil Engineering Faculty

Required.

6. Specific goals for the course

a. specific outcomes of instruction, ex. The student will be able to explain the significance of current research about a particular topic

- Student comprehends assumptions and basic concepts of strength of materials, in particular: a concept of an internal force, sectional forces, a state of stress, a state of strain, constitutive description of material.
- Student comprehends the concept of material effort and its measure as well as basic hypotheses of material effort (failure theories): of the maximum normal stress (Gallileo), maximum shear stress (Tresca), maximum energy of distortion (Huber-Mises).
- Student knows how to apply the design concepts and formulas of strength of materials for practical cases of mechanical engineering.
- Student is able to apply the design concepts for simple and complex cases of stress state.
- Student is able to assess the risk of the assumed simplifications in the design procedures

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

K1A_W04, K1A_U03, K1A_U12

7. Brief list of topics to be covered

- 1. Introduction.
- 2. Internal forces and cross-sectional forces.
- 3. Problems of strength of a prismatic bar. The problem of a pure and simple tension/compression (statically determined and undetermined).
- 4. Pure and simple torsion, torsion of a bar with circular cross-section.
- 5. Pure and simple bending, unsymmetric bending.
- 6. Non-uniform bending, shear stress in beams.
- 7. Bending due to eccentric load.
- 8. State of stress analysis in a point. A plane state of stress.
- 9. Strain analysis.
- 10. Constitutive equations, generalized Hooke's law for isotropic materials.
- 11. Beam deflection.
- 12. Material effort, hypotheses of material effort.
- 13. Buckling.

^{*-} Consultations were not included in the contact hours

^{**-}per semester