

SYLLABUS

Name: **Computer Graphics (InfAAu>SI6CG19)**

Name in Polish:

Name in English: **Computer Graphics**

Information on course:

Course offered by department: Faculty of Automatic Control, Electronics and Computer Science

Course for department: Silesian University of Technology

Default type of course examination report:

EGZ

Language:

English

Course homepage:

<https://platforma2.polsl.pl/rau2/course/view.php?id=400>

Short description:

The course aims to provide the theoretical basis of 3D computer graphics algorithms, and selected topics of 2D computer graphics as well as providing the necessary practical experience acquired as a result of the implementation of algorithms in the laboratory exercises. The lecture will enable students to get in touch with modern solutions in the field of photo-realistic and interactive 3D graphics offered in world literature. The main idea is to understand the rendering pipeline realized by graphics cards as a basic abstraction in computer graphics. The course will provide the basic skills in the programming of OpenGL API with the usage of a programmable pipeline in GLSL.

Description:

Laboratory (sem. 6):

Introduction. Raster algorithms. Color. 3D Transformations. Hidden surface removal. Illumination models. Raytracing. Bone animation, Collision detection, Particle effects, Pixel, and vertex shaders. Introduction in Unity programming. Animation.

Prerequisites and additional requirements, taking into account the course sequence:

Computer Programming (C, C++), Algebra and Analytic Geometry, Fundamentals of computer programming, Computer graphics (lectures, sem. 5).

Laboratory (sem. 6): 30h

Student's own work: 50h preparation for classes and exam

Others: 20h discussion of reports and tasks

Total hours sem. 6: 100h (contact 50h/individual work 50h)

Number of ECTS credits (according to the study program): 4

Bibliography:

[1] Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven K. Feiner, Kurt Akeley Computer Graphics: Principles and Practice (3rd Edition), 2013.

[2] A series of books: Graphics Gems

[3] Francis S Hill Jr., Stephen M Kelley: Computer Graphics Using OpenGL (3rd Edition).

[4] Sumanta Guha: Computer Graphics Through OpenGL: From Theory to Experiments,

[5] Richard S. Wright Jr., Benjamin Lipchak: OpenGL. Księga eksperta. Helion

[6] OpenGL Programming Guide

Learning outcomes:

K1A_W09, K1A_W15 Student is aware of basic computer graphics algorithms.

K1A_W09, K1A_W15 Knowledge of basic methods used in solving computer science tasks in the field of computer graphics algorithms.

K1A_W09, K1A_W15 Students understand the graphical pipeline.

K1A_U08, K1A_U12, K1A_U22 Students can solve problems related to 2D and 3D computer graphics.

K1A_U08, K1A_U12, K1A_U22 Students can implement basics 2D and 3D graphics algorithms.

Assessment methods and assessment criteria:

Sem. 6 - Final grade based on grades from laboratory exercises and the written exam grade. Passing each exercise is required. In the event of absence, the deadline for making up work is agreed upon with the laboratory teacher.

The final grade is the average of the laboratory and exam grades.

The syllabus is valid from the academic year 2024/2025, and its content is not subject to change during the semester.

Course credits in various terms:

Informatics, full-time first degree engineering studies 7 sem. (InfAAu-SI7)				
Type of credits	Number	First term	Last term	
European Credit Transfer System (ECTS)	4	2020/2021-L		