SCOPE OF QUESTIONS FOR THE FINAL EXAM - MSc. CONTROL, ELECTRONIC AND INFORMATION ENGINEERING

I. COMMON COURSES FOR ALL SPECIALIZATIONS

Advanced Optimization Methods

- 1. Duality in linear programming
- 2. Integer linear programming
- 3. Kuhn-Tucker conditions
- 4. Linear-Quadratic problem
- 5. Maximum principle

II. COMMON COURSE FOR SPECIALIZATION - AUTOMATIC CONTROL

Advanced Topics in Numerical Methods

- 1. List and compare the methods of solving systems of linear equations known to you
- 2. What is the Linear Discriminant Analysis and to which purpose it can be used?
- 3. What is the Principal Component Analysis and to which purpose it can be used?
- 4. Compare methods of crisp and fuzzy clustering
- 5. Compare methods of calculation of eigenvalues and eigen vectors known to you

Advanced Control

- 1. Phase plane analysis. Equations of phase trajectories, phase portrait. Properties of phase trajectories. Singular points and trajectories
- 2. Lyapunov definition of stability and asymptotic stability. Local stability, indirect Lyapunov method. Determination of equilibrium points. Global stability, direct Lyapunov method
- 3. Describing function method
- 4. Relay control systems analysis in phase plane. Stabilization of relay systems. Sliding modes
- 5. On-off relay control time domain analysis
- 6. Extremal control systems. System with derivative sign examination. System with external modulating signal, synchronic detection, approximate system description and stability analysis
- 7. State observers. LQ observer based regulator

System Identification

- 1. Least squares method
- 2. How to identify a time-varying system?
- 3. How to identify the frequency response function?
- 4. Parametric and non-parametric models
- 5. How to validate a model?

Expert Systems

- 1. Give an operational definition of the artificial intelligence system. What is the aim of artificial intelligence as engineering idea?
- 2. Define expert system and describe its informatics' structure
- 3. Enumerate methods of the knowledge gathering and knowledge representation. Describe one chosen
- 4. Give aims of the forward (backward) chaining inference and present its basic ideas
- 5. What are the methods of uncertainty modelling? Describe one chosen

Modeling and Simulation of Industrial Systems

- 1. Modelling of lumped systems based on mass and energy conservation laws
- 2. Modelling of distributed parameter systems based on mass and energy conservation laws
- 3. Simulation of lumped and distributed parameter systems methods for numerical integration
- 4. Model-based control basic concept and example applications
- 5. Virtual commissioning of control systems basic concept and example applications

Biotechnical Systems

- 1. Ecological problems with wastewater
- 2. Measurements in wastewater treatment
- 3. Processed for the removal of carbon, nitrogen and phosphorous compounds from wastewater
- 4. Control of activated sludge processes for wastewater treatment
- 5. Modelling of activated sludge processes

Programmable Controllers

- 1. Main features of programmable controllers
- 2. The principle of operation of programmable controllers
- 3. Plant-controller interface
- 4. Programming languages
- 5. Configuration of the controller

Sensors and Actuators

- 1. Sensors, smart transducers and HART protocol
- 2. Contact and non-contact temperature measurements and sensors/devices
- 3. Strain and pressure measurements, sensors and transducers
- 4. Acceleration sensors
- 5. Actuators

III. COMMON COURSE FOR SPECIALIZATION – DATA SCIENCE

Markov Models

- 1. Idea of Metropolis-Hastings algorithm
- 2. Types of Markov Chain (irreducible etc.)
- 3. Forward and backward algorithm
- 4. Properties of time reverse Markov Chains

Classifiers

- 1. Machine learning (main idea; basic concepts: supervised learning, unsupervised learning, reinforcement learning)
- 2. Feedforward neural networks and their learning algorithms
- 3. Assessing the quality of recognition systems; performance measures and testing/validation scenarios

Cloud Platforms

- 1. Cloud computing concept, properties, and models
- 2. Cloud resources and services for laaS and PaaS models
- 3. Construction of a Datacenter
- 4. Scalability, availability, durability, and fault tolerance
- 5. Cloud security, economy, and pricing

Evolutionary Algorithms

- 1. Genetic algorithms, evolution strategies, memetic algorithms: chromosome coding, variation operators, population management
- 2. Ant system
- 3. Particle swarm optimization
- 4. Artificial immune systems
- 5. Simulated annealing

Formal Languages

- 1. Alphabet, formal language, classification of formal languages
- 2. Kleene's theorem and pumping lemma for regular languages
- 3. Automata for regular languages
- 4. Top-down analysis of context-free languages
- 5. Bottom-up analysis of context-free languages

Fuzzy Data Analysis

- 1. Define the fuzzy set and explain to which kinds of uncertainty representation it can be used
- 2. Explain the difference between the fuzzy set and the intuitionistic fuzzy set and provide examples of their use
- 3. What is the extension principle and in which way it is used in fuzzy control
- 4. What are similarities and differences in fuzzy analysis of data and analysis of fuzzy data
- 5. Define the two uncertainty measures in the Dempster-Shafer theory of evidence

Statistical Learning

- 1. Model selection approaches and selection criteria
- 2. Logistic regression as classifier
- 3. Correlation coefficient and its types
- 4. Unsupervised learning techniques
- 5. Feature dimensionality reduction methods (selection and extraction)

Knowledge Discovery

- 1. Principles of sequential covering approach to classification rule induction
- 2. Frequent itemset mining A priori approach
- 3. Rule quality measures precision, coverage, support, lift (definitions and applications)
- 4. Feature Selection Rough Set based approach (reducts and relative (decision) reduct)
- 5. General outline of decision tree induction

Hadoop Ecosystem

- 1. V model, motivations, and usage scenarios of Big Data
- 2. Data models, scalable databases, their properties and comparison
- 3. Tools and frameworks of Hadoop ecosystem
- 4. Hadoop construction, MR processing, job execution
- 5. Big Data and Cloud complementarity

Data Mining in Practice

- 1. Performance evaluation of classifiers and regression models
- 2. Methods of splitting the data into train and test sets for models performance evaluation
- 3. Analysis of the actor role in social networks
- 4. Community identification in social networks
- 5. Visualisation of a social network

Applied Statistics

- 1. Multiple testing correction
- 2. Confidence intervals for population means
- 3. Statistical inference procedure (from hypothesis to conclusion)
- 4. Analysis of Variance (ANOVA)
- 5. Types of error in statistical testing

IV. COMMON COURSE FOR SPECIALIZATION - ELECTRONICS

Advanced Topics in Numerical Methods

- 1. List and compare the methods of solving systems of linear equations known to you
- 2. What is the Linear Discriminant Analysis and to which purpose it can be used?
- 3. What is the Principal Component Analysis and to which purpose it can be used?
- 4. Compare methods of crisp and fuzzy clustering
- 5. Compare methods of calculation of eigenvalues and eigen vectors known to you

Programmable Logic Devices

- 1. General classification of Programmable Logic Devices: SPLD-s, CPLD-s, FPGA-s, architectures, programming technologies
- 2. CPLD-s: the general concept, architecture (Function Blocks, macrocells, expanders), routing, programming technologies, logic capacity, speed
- 3. FPGA-s: the general concept, architecture (CLB-s, specific elements like fast-carry logic, Block RAM-s, DSP Blocks, DCM-s), routing, programming technologies, logic capacity, speed
- 4. Electrical properties of advanced PLD-s: logic standards, and other I/O configuration options, power consumption, packages, programming
- 5. Design flow for advanced PLD-s, in particular (logic) synthesis, (physical) implementation, simulation, static timing analysis, power estimation

Electromagnetic Compatibility

- 1. Typical noise sources and coupling path for electromagnetic noise
- 2. Nonideal behavior of typical circuits components
- 3. Conducted emissions and EMI filters
- 4. Radiated emission and shielding against electromagnetic fields
- 5. Testing for EMC compliance (typical emission and immunity tests)

Optoelectronics

- 1. Optical transmitters direct modulation (single transistor, logic gate, emitter coupled transmitters), indirect (external) modulation (phase, Mach-Zender, eletro-absorption, acousto-optic modulators)
- 2. Black-body radiation
- 3. Light and matter interactions absorption, spontaneous emission, stimulated emission
- 4. Photodiodes (p-n, p-i-n, APD) current-voltage characteristics, electrical model, spectral response, junction capacitance, solar cell
- 5. Optical receivers

Microelectronics

- 1. Technology of semiconductor single crystals as typical substrates
- 2. Technology and control of an ultrahigh vacuum for semiconductor microelectronics
- 3. Preparation and characterization of surface properties of semiconductor substrates
- 4. Technology of selected semiconductor electronic materials in the form of low dimensional structures
- 5. Surface analytical methods for control of surface properties of low dimensional electronic nanomaterials and structures

Sensor Networks

- 1. Sensor network protocol stack layers and management planes
- 2. Wireless Sensor Networks topologies
- 3. Routing protocols in Wireless Sensor Networks network structure-based protocols
- 4. IEEE 802.15.4 standard frame types
- 5. MEMS manufacturing technologies

Power Electronics

- 1. The Budeanu definitions of reactive and distortion power in circuits with non-sinusoidal current waveforms. Draw a power tetrahedron. Define Power Factor in the circuit with non-sinusoidal current waveforms (Budeanu theory)
- 2. What are 3 basic DC/DC converters a short description and figures
- 3. Describe (the figure and the description) Clarke transform for the balanced 3-phase system. Draw 2 figures for the different sequence of abc phases. Where is the β axis
- 4. What is a general idea of the single phase Shunt Active Power Filter
- 5. Draw and describe the characteristics (the I-V curve) of a PV cell. Describe the idea of the Maximum Power Point Tracking method based on the analysis of dPPV/dVPV

Design for Testability

- 1. Defects, faults and errors in digital circuits
- 2. Automatic test pattern generation for digital circuits
- 3. Built-in self-test
- 4. Scan path and boundary scan path
- 5. Fault-tolerant digital circuits

Telemedicine

- 1. Principles of telemedicine description
- 2. Basic characteristics of selected biomedical signals
- 3. Requirements for sensor networks in telemedicine
- 4. Characteristics of personal devices in single WBAN
- 5. Safety of biomedical telemetry

Verification of Digital Systems

- 1. Hardware description language principles of description of parallel systems and description execution principles
- 2. Synthesizable construct requirements hardware mapping limitation. Modelling and verifying timing properties of digital components and systems
- 3. Complex behavioral system modelling Bus Functional Models, event driven modelling, transactors
- 4. Universal Verification Methodology (UVM) concepts and methods, random testing
- 5. Programmable Language Interface accessing the simulator structures from C. Principles of interacting with simulator using PLI/VPI or VHPI

Radiocommunication

- 1. Budget of a radio link
- 2. Comparison of the free-space and two-ray propagation models
- 3. Antennas. Parameters and constructions
- 4. Basic parameters of the receivers and transmitters
- 5. Noise in receiving systems. Noise figure of a transducer, noise floor, noise figure of the cascaded transducers Friis equation

Systems on Chip

- 1. Language, grammar, context free language, BNF notation
- 2. Syntax diagram construction and application for analyzer building
- 3. Data flow graph intermediate representation of statements semantics, optimizing the representation
- 4. Mapping the data flow graph to instructions managing variables and optimizing generated instruction sequence
- 5. Mapping the data flow graph to hardware components using unlimited and limited resources. Scheduling concepts, resource sharing concepts and registers management