New cementitious binders for immobilization of radioactive waste

EURECA-PRO

Nuclear Energy Seminar 26/04/2023

W. Schroeyers, N. Vandevenne, B. Mast, A. Mooren, B. Vandoren, Y. Pontikes, R. Konings, S. Schreurs

wouter.schroeyers@uhasselt.be

KNOWLEDGE IN ACTION

IHASSELT

Centre for Environmental Science (CMK)

CMK conducts fundamental and applied research:1. To understand influences of the environment on organisms

 To develop and assess sustainable clean
 technologies to mitigate influences of the environment on organisms

3. To monitor, value and **optimize biodiversity and ecosystem services** under different stress conditions, including climate change

Nuclear Technology (NuTeC) research group is embedded in the CMK

NuTeC – Research in environmental technology

• Nuclear decommissioning and immobilization of nuclear waste

Characterization

Encapsulation -immobilization

Recycling of naturally occurring radioactive materials (NORM)

NTAL SCIENCES

HASSEL

Characterization

Treatment

Recycling in construction

Adsorption & desorption of (radiological) pollutants

Outline

1. Introduction – current situation

2. New cementitious binders

- a) Immobilization
- b) Effects of ionizing radiation on the encapsulation matrix
- c) Treatment/management of liquid radioactive waste

3. Lessons learned

Classification radioactive waste (Belgium)

Category A – B – C waste

	Low activity [< 5 mSv/h]	Intermediate activity	High Activity [> 2 Sv/h]
Short half life [< 30 year]	Α	Α	С
Long half life [> 30 year]	В	В	С

High activity waste: vitrification

- Liquid waste added to ceramic- or glass-forming chemicals, mixed and thermally treated to immobilize in solid waste-forms.
- **Effective** but very **expensive** \rightarrow less suitable for larger volumes

UHASSEL

KNOWLEDGE IN ACTION

^{a, b} CEA, http://www.materials.cea.fr/en/PDF/MonographiesDEN/Nuclear%20waste%20conditioning_CEA-en.pdf, , accessed 2018 ^c Belgoprocess, https://www.belgoprocess.be/activiteiten/tussentijdse-opslag-van-geconditioneerd-belgisch-radioactief-afval, accessed 2018

Low and Intermediate Level Waste: cementation

 Widely used: compaction or incineration, followed by cementation as a cost-efficient and proven technology

Short living waste (< 30 year)

Low and Intermediate Level Waste: near surface disposal

NIRAS, https://www.niras.be/oppervlaktebergingsinstallatie-dessel-0, accessed 07/09/2018

Low and Intermediate Level Waste: cementation

Current methods

Advantages OPC

Cementation using ordinairy Portland cement (OPC)

Availability

. . .

Relative **low-cost Easily modified** to fit specific purpose **Robust and tolerant** to a wide variety of wastes Relatively easily **processed remotely**

> UHASSELT KNOWLEDGE IN ACTION

Low and Intermediate Level Waste: cementation

Current methods

Cementation using ordinairy Portland cement (OPC)

Disadvantages OPC ^a

*High temperature increase resulting from the heat of hydration, giving rise to thermal stresses and possible cracking.

*The **weak immobilization potential** for monovalent cations such as Cs⁺.

*Moderate durability (e.g. leaching through alkali-silica reaction (ASR) with certain types of RAW under certain conditions)

Outline

1. Introduction – current situation

2. New cementitious binders

- a) Immobilization
- b) Effects of ionizing radiation on the encapsulation matrix
- c) Treatment/management of liquid radioactive waste

3. Lessons learned

Similar materials, different uses

Construction

- High strength
- Fast strength development
- Control of flow properties with organic admixtures
- Durability for 50-200 years service life
- Passivation of mild steel
- Low cost

Waste immobilisation

- Durability for 100,000 1,000,000 years service life
 - Binding of radionuclides
 - Low heat evolution
- Dimensional stability
- Controlled corrosion of reactive metals
 - Stability under irradiation

Can we realistically expect all this from a single material?

•

OWLEDGE IN ACTION

Production Alkali activated materials (AAMs)

KNOWLEDGE IN ACTIO

Immobilisation of Cs and Sr in alkali activated materials

ASTM C1220-98 (Static monolithic leaching test)

'Clean'' precursor	Start from pure Al, Si and Ca oxides	
	Mix and melt at high temperature (1630 °C)	
	Quench in water	
Model AAM-composition	Different compositions	
	2 M NaOH	
	1 wt% Cs ; 0.1 wt% Sr	
	Leaching <u>28 d</u> at 90 °C	

UHASSEL

WLEDGE IN ACTIO

[PhD Niels Vandevenne, 2019]

Immobilisation of Cs and Sr in alkali activated materials

ASTM C1220-98 (Static monolithic leaching test)

Cs	92 % immobilisation 28 d leaching 90 °C		
	Dependent on the Si/AI and Ca/(Si+AI) ratios of the pred	cursor	
	Combination of initial wash-off, diffusion and depletion a easily-leachable fraction	ofan	
Sr	99 % immobilisation 28 d leaching 90 °C		
	Dependent on the Ca/(Si+Al) ratio		
	Limited to a small fraction present on or near the surface	÷	
		44	
PhD Ni	els Vandevenne, 2019]		

Immobilisation of Cs and Sr in alkali activated materials

• **Control** of the matrix?

- Residues <-> model compounds
- Variations in the (trace) element concentration?
- Impact of the waste-loading?
- Using lower alkaline activating solutions
- Durability studies for use in long-term waste management

UHASSE

WLEDGE IN ACTIK

Effect of waste- loading on matrix properties	Cs ⁺ addition:	Homogeneous incorporation in AAM No significant effects on Early reaction kinetics
	Sr ²⁺ addition:	Sr-precipitation (Sr(OH)2) Significant effects on Early reaction kinetics

[PhD Niels Vandevenne, 2019]

Effects of ionizing radiation on concrete **Dehydration Radiation-induced carbonation** Radiolysis Radiolysis Decomposition of water and Formation of H_2O_2 \rightarrow CaO₂,H₂O formation of H_2 gas \rightarrow Ca(\overline{OH}) \rightarrow CaCO₃ Heating *Evaporation of water* Drying & Shrinkage Decomposition Cracking & Loss of strength UHASSE

WLEDGE IN ACTIK

[PhD Bram Mast, 2020]

Radiation-induced mechanical degradation in AAMs				
Na ₂ SiO _{3 \ /} Plasma slag	IP composite	wt.%		
H ₂ O NaOH	SiO ₂	34.0		
	Fe _x O _y *	24.1		
	CaO	21.1		
	Al ₂ O ₃	11.9		
	Na ₂ O	6.3		
and a second	Other	2.1		
	* 57% FeO and 4	3% Fe ₂ O ₃		

Design4application

Radioactive waste encapsulation

- Less Ca(OH)₂
- Reduced H₂O content: less damage as a result of dehydration

UHASSEI

OWLEDGE IN ACTIO

High immobilization capacity

Good Shielding properties

[PhD Bram Mast, 2020]

[PhD Bram Mast, 2020]

LEDGE IN ACTIC

Immobilisation of liquid nuclear waste

1.Adsorption on **nanoparticles**

Cerium Oxide Nanoparticles (CeO₂ NPs)

2. Final immobilisation with **new cementitious binders**

Collaborative Doctoral Partnership with JRC (Joint Research Centre)

••

UHASSEL

NOWLEDGE IN ACTION

[PhD Angela Mooren]

Outline

- 1. Introduction current situation
- 2. New cementitious binders
 - a) Immobilization
 - b) Effects of ionizing radiation on the encapsulation matrix
 - c) Treatment/management of liquid radioactive waste

3. Lessons learned

Lessons learned

- AAMs have the potential to outperform OPC but a lot of extra studies are required.
- Availability and variations in elemental composition of input materials
 → issues for controlled nuclear waste encapsulation

- Presence of iron: additional effects of gamma irradiation on curing of Fe-rich AAMs
- Not the best idea to use (long lived) NORM residues for immobilization of (short lived) Cat A waste

