

Silesian University of Technology

Coal-to-Nuclear energy transition pathway for Poland

<u>Łukasz Bartela</u> <u>Paweł Gładysz</u> Henryk Łukowicz

Seminar "Nuclear energy" 6. Priority Research Area Climate and environmental protection, modern energy Research sub-area POB6.12: Nuclear energy

Rzeczpospolita Polska

DEsire Team:

Silesian University of Technology

Ministerstwo Klimatu i Środowiska

Main goals of the DEsire project

A plan of decarbonization of the power industry through modernization with the use of III+ and IV generation nuclear reactors

which will be a roadmap for the organization of investment processes aimed at transforming centralized generation systems, considering the criteria of sustainable development

Pilot of the national Cluster of Power Industry Transformation (CPIT)

which will provide organizational support for activities aimed at increasing the effectiveness of various stakeholder groups in the process of transformation of domestic power plants and combined heat and power plants.

- works done by the Qvist-Gładysz-Bartela team

workforce.

Repurposing

C2N#2 Direct

NPP is being built in place of the decommissioned

infrastructure and main infrastructure are used,

direct coupling of the reactor island with the

C2N#3 Indirect

- NPP is being built in place of the decommissioned CPP,
- space, support infrastructure and main infrastructure are used,
- direct coupling of the reactor island with the turbine island (steam generator + TES system)

Investigating Benefits and Challenges of Converting Retiring Coal Plants into Nuclear Plants

Nuclear Fuel Cycle and Supply Chain

> Prepared for U.S. Department of Energy Systems Analysis and Integration lansen, W. Jenson, A. Wrobel (INL) N. Stauff, K. Biegel, T. Kim (ANL) R. Belles, F. Omitaomu (ORNL) September 13, 2022 INL/RPT-22-67964

Full Repowering

& Partial Repowering

- works done by the Qvist-Gładysz-Bartela team

Scope:

- General assessment of Polish energy sector and options for decarbonization within retrofit of existing units
- Small modular reactors reftrofit case studies for three different coal-fired plants in Poland (**Coal-to-Nuclear option**)

Scope:

- Coal-to-Nuclear with Thermal Energy Storage (TES) option case study for Lagisza Power Plant and Kairos KP-FHR
- Gas-to-Nuclear option case studies for (i) reference state-ofthe-art NGCC and (ii) specific CHP NGCC located in Poland

TES at Łagisza unit

, Turbine building
Coal bollers
- Flue gas treatment
Railway Coal handling
Coal-fired unit 10
Cooling tower
Coal handling
560 °C 27 5 MPa

-	580 °C, 5.5 MPa
3	chine Unit
r c 41	290 °C apacity: % - 100%)

- works done by the Qvist-Gładysz-Bartela team

- Łagisza Power Plant 460 MW Unit:
 - integration with HTR-PM (China)
 - integration with Kairos KP-FHR (US)
- Reference 200 MW Class Unit: -
 - integration with Kairos KP-FHR (US)
 - integration with generic MSR
- CEZ Chorzów Combined Heat and Power Plant:
 - integration with Kairos KP-FHR (US)
 - integration with generic MSR

Fig. Unit-by-unit retrofit decarbonization recommendation

Fig. Matching the thermal power output of coal boilers with SMRs

Fig. Possible investment savings due to the use of the existing infrastructure of the coal-fired power unit

Total capital investment cost (TCIC) = overnight capital cost (OCC) + interests during construction (IDC)

$TCIC_{RET} = OCC_{GE}(1 - RS) + IDC_{RET}$

RS – **retrofit savings in direct retrofit (C2N#2)** option for Lagisza power plant were estimated to be **up to**:

- 97% for steam cycle,
- 35% for instrumental, controls and other plant auxiliaries,
- 70% for electrical side,
- 50% for civil structures.

- works done by the Qvist-Gładysz-Bartela team

 $\Delta NPV = \sum_{\tau=1}^{n} \frac{(NCF_{\text{RET},\tau} - NCF_{\text{REF},\tau})}{(1+r)^{\tau}} - TCIC_{\text{RET}}$

Fig. ΔNPV as a function of project lifetime for the GF and RET investment pathways for Łagisza unit

Fig. Diagram of integrations of SMR systems with a 460 MW Łagisza unit

Investment pathways

Fig. ΔNPV for base assumptions for three investment pathways (retrofit investment) pathway for three different values of retrofit savings) for Łagisza 460 MW unit

Genesis of the DEsire p

- works done by the Qvist-Gładysz-Bartela

Fig. The results of the ΔNPV sensitivity analysis to changes in the main parameters dete the investment environment for the RET investment pathway for Łagisza 460 MW

Table. Discount payback period for different electricity (el), coal and CO₂ emission allowance (ea) prices for two investment pathways for Łagisza unit

						(*************************************	120021	
			Pathway of investment				nent	
				GF			RET	-
			Cea, €/tCO2			Cea, €/tCO2		
roject			25	50	75	25	50	75
	hl.	50	33	14	8	18	8	4
team	Cel, €/MWł	75	35	17	10	19	10	6
	€/J	100	33	17	12	19	11	8
		1.6	>60	26	9	41	15	14
ermining	Coal, E/GJ	3.2	35	17	10	19	10	6
unit	U V	6.4	13	8	6	8	5	3
2,000 1,800 9 1,600 1,000 1,200 1,000	Total operation Capacity fact Capacity fact Construction	or (RET) or (REF) time (RET)		the emis GF o	roject e to: price sion a overnig	of co Illowa ght cap	al an nce, pital c	costs,
1.5 0.5 1.0 X/X _{be}		2	10					

period relative to the average price

Fig. ΔNPV as a function of TES thermal energy flux supply for the eleven values of *deviation index* (from 0 to 1, with step 0.1).

Aside of the DEsire project

- works done by the Qvist-Łukowicz-Gładysz-Bartela team **Repowering a Coal Power Plant Steam Cycle Using Modular Light-Water Reactor Technology**

Fig. Diagram of the steam cycle with marked calculation points after modernization of the power unit (ed dashed line - components previously used in the coal-fired power unit)

	Live Steam Pressure	Live Steam Temperature	Reheated Steam Temperature	Inlet Temperature to Boiler/SG	Boiler/SG Pow
plant	28 MPa	560 °C	580 °C	290 °C	957.1
red plant	7 MPa	285 °C	Varies	Varies	Vari

Analysed cases:

- **original IP section** (case A C):
- A. no reheater saturated steam at SG (4.06 MPa/251.2 °C)
- B. 1-stage reheat superheat steam at SG (4.04 MPa/285 °C)
- C. 2-stage reheat superheat steam at SG (4.04 MPa/285 °C)
- **new HP Section** (case D)

Aside of the DEsire project

- works done by the Qvist-Łukowicz-Gładysz-Bartela team **Repowering a Coal Power Plant Steam Cycle Using Modular Light-Water Reactor Technology**

Fig. Steam expansion line in the turbine of the 460 MW power unit (REF) and postmodernization state (Casa A, Case C, Case D)

Fig. Gross electric power output for different parameters of steam feeding the turbine

1
 1
 ŧ.
E
Ľ
1
L
1
 ٩.

Aside of the DEsire project

- works done by the Qvist-Łukowicz-Gładysz-Bartela team **Repowering a Coal Power Plant Steam Cycle Using Modular Light-Water Reactor Technology**

Fig. NPV as a function of project *lifetime for steam cycle* modernization cost index MC_{ST} = 0.5 for average level of RS

Component of Costs	Category	Symbol of Component	Budgeted Share *, %	Minimal Retrofit Savings, %	Mid-Level Retrofit Savings, %	Max Reti Sav
	-	i	sOCC _i or sTIC	$egin{pmatrix} (RS_{OCC_1})_{\min} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$egin{array}{c} \left(RS_{OCC_1} ight)_{ m av} ext{ or } \ \left(RS_{TIC} ight)_{ m av} \end{array}$ or	(F (1
Initial fuels inventory	R	IFI	7.0	0.0	0.0	
Other costs (transmission, owner's, etc.)	т	OC	10.0	100.0	100.0	
Land and land rights	R + T	LLR	0(~0)	100.0	100.0	
Structure and improvements	R	S&I	15.0	0.0	12.0	
Reactor plant equipment	R	RPE	18.0	0.0	0.5	
Turbine plant equipment	Т	TPE	15.0	0.0	49.5	
Electric plant equipment	т	EPE	5.0	42.0	60.0	
Miscellaneous plant equipment	R + T	MPE	2.0	6.0	48.5	
Main condenser and heat rejection system	т	MCHR	3.0	0.0	50.0	
Total indirect costs	R + T	TIC	25.0	16.0	27.5	

Tab. Overall capital costs and total indirect costs for respective components of investment subject

Coal-to-Nuclear classification – DEsire project

C2N#0 Greenfield

- NPP is being built near the decommissioned CPP,
- no material links between the liquidation and the investment,
- it may be beneficial, for example, to transfer the rights to use water intakes, access to transmission lines and workforce.

C2N#1 Brownfield

- NPP is being built in place of the decommissioned CPP,
- space and support infrastructure are used,
- any type of nuclear reactor may be used.

C2N

- space, support infrastructure and main infrastructure are used,
- direct coupling of the reactor island with the turbine island.

C2N#2 Direct

NPP is being built in place of the decommissioned

C2N#3 Indirect

- NPP is being built in place of the decommissioned CPP,
- space, support infrastructure and main infrastructure are used,
- direct coupling of the reactor island with the turbine island (steam generator + TES system)

Investigating Benefits and Challenges of Converting Retiring Coal Plants into Nuclear Plants

Nuclear Fuel Cycle and Supply Chain

> Prepared for U.S. Department of Energy Systems Analysis and Integration J. Hansen, W. Jenson, A. Wrobel (INL) N. Stauff, K. Biegel, T. Kim (ANL) R. Belles, F. Omitaomu (ORNL) September 13, 2022 INLRPT-22-67964

- 1. Bełchatów
- Chorzów 2.
- Dolna Odra 3.
- Jaworzno 4.
- 5. Katowice
- Karolin 6.
- 7. Konin
- 8. Kozienice
- 9. Kraków
- 10. Łagisza
- 11. Łaziska
- 12. Łódź
- 13. Opole
- 14. Ostrołęka

15. Pątnów

- 16. Połaniec
- 17. Puławy
- 18. Rybnik
- 19. Siekierki
- 20. Siersza
- 21. Skawina
- 22. Turów
- 23. Wrocław

Σ 92 units Σ 22.4 GW_{el}

Fig. Locations of CPPs selected for the assessment of the brownfield C2N conversion pathway potential

Fig. Locations of CPUs selected for the assessment of the direct C2N conversion pathway potential

1. Bełchatów 2. Jaworzno 3. Kozienice 4. Łagisza 5. Opole 6. Pątnów 7. Puławy 8. Turów

Σ 6.2 GW_{el}

as part of a **Just Transformation of Coal Regions**

Fig. Locations indicated in the Polish Nuclear Power *Programme and analyzed in the DEsire project*

Locations

Gross electrical output [MW] 1200 1000 800 600 400 200 0 Jurów 81. Turów 802 Turów 803 Turów 804 Turów 805 Turów 805 Turów 206 Opole B1 Opole B2 Opole B3 Opole B4 Opole B5

Fig. Gross electric power of all considered units

Stage I – evaluation criteria

Technical aspects:

- **CO**, emissions to be avoided
- power output **infrastructure** (electrical grid capacity)
- access to transport **infrastructure** (sea, railroad, highways) \bullet
- assess to **cooling water** (sea, lakes, rivers) \bullet
- **area availability** (dates, complexity)
- **demand for heat** (district heating systems, industrial heat demand)
- Safety aspects:
- operation of nuclear power systems (e.g. seismic activity, floods, mineral deposits, selected types of facilities)
- potential **nuclear hazards** to the personnel of the unit and the **local population** (e.g. population density)
- advancement, redundancy of safety systems)

C2N#1 Brownfield C2N#2 Direct

- different weighting factors for evaluation criteria depending on the pathway (C2N#1 vs C2N#2)
- final conclusions based on unified approach
- first step for **CtNRL** (Coal-to-Nuclear Readinnes Level)

formal requirements and recommendations imposed by international and national organizations on the design and applied solutions for reactor protection systems, steam turbine thermal cycle, and auxiliary infrastructure (technology

management of **spent nuclear fuel and radioactive waste** (management technology/facilities, enrichment of nuclear fuel)

Stage I – some results

Preliminary recommendations for power plants and C2N#1 (brownfield) pathway:

- Kozienice power plant
- **Połaniec** power plant
- **Dolna Odra** power plant
- Ostrołęka power plant

Opole, Bełchatów and Pątnów also obtained high scores, but for this pathway only four locations were assumed for further studies within DEsire project. Thus, it does not mean that other locations are not suitable, just less favourable then those four.

Fig. Technical and safety preliminary results

Stage I – some results

Direct

Preliminary recommendations for power plants and C2N#2 (direct) pathway:

- Kozienice 2 B11 unit
- Opole B6/B5 units

EC Puławy and Turów B11 also obtained high scores, but for this pathway <u>only two</u> locations were assumed for further studies within DEsire project. **Thus, it does not mean that other units are not suitable, just less favourable then those two preselected**.

Fig. Technical and safety preliminary results

C2N#1 **Stage I – reactors matching** Brownfield

Provider	Name	Type of reactor	Electrical power (gross / net)	Efficiency	Status (in operation / in construction)
Westinghouse (USA)	AP-1000	pressurized water reactor (PWR)	1250 / 1150 MW	34%	4 / 2
KHNP (South Korea)	APR1400	pressurized water reactor (PWR)	1420 / 1350 MW	36%	4 / 6
EDF (France)	EPR	pressurized water reactor (PWR)	1720 / 1600 MW	38%	3/3
EDF (France)	EPR-1200	pressurized water reactor (PWR)	c.a. 1200 MW	b/d	0/0
KHNP (South Korea)	APR1000	pressurized water reactor (PWR)	c.a. 1000 MW	b/d	0/0

Silesian University of Technology

800

Preselection of SMRs:

- we do not consider reactors lacksquaresmaller then **250 MW**_{th};
- for prelimiary selected units, we would need to install 4 – 6 reactors;
- 500 MW_{el} class units (Turów \bullet B11, Pątnów 2 B9 and Łagisza B10) would be more suitable C2N#2 direct retrofit for option.

C2N#2 **Stage I – reactors matching** Direct

Name	Country	Туре	Moderator	Coolant	Fuel	Reactor thermal power	Coolant outlet temperature	Status and pred	dictive d					
HTR-PM	China				8,5% LEU	2x250 MW	750°C	in operation	202					
SC-HTGR	USA	GCR		helium	14,5% HALEU	625 MW	750°C	preliminary design	203					
GTHTR300	Japan			-	14% HALEU	600 MW	950°C	basic design	204					
IMSR400	Canada	graphite MSR		flueride celte	<5,0% LEU	440 MW	700°C	detailed design	203					
ITMSF	Japan			graphite	fluoride salts	2,0% LEU	450 MW	704°C	basic design	b/				
ThorCon	USA										<5,0% LEU	557 MW	704°C	basic design
KP-FHR	USA			molten salts	19,7% HALEU	320 MW	650°C	conceptual design	2026 c					
LFTR	USA				²³³ U Th	600 MW	650°C	conceptual design	b/					
MCSFR	USA		chloride salts	15% HALEU	125/500/ 1000/3000	750°C (950°C)	conceptual design	203						

Potential for the World

Investments in coal energy in the world in the last 15 years (from 2007 to 2021): **1350 GW** of installed capacity 3400 power units **1300** power plants

QuantifiedCarbon

 \bigcirc

Cap	acity (MW)
	30
0	1,000
0	2,000
	3,300
Yea	r
	2021
11	2020
	2019
	2018
黷	2017
	2016
	2015
	2014
	2013
	2012
	2011
	2010
	2009
	2008
	2007

Potential for the Nord Nuclear Ready status

Investments in coal energy in the world in the last 15 years (from 2007 to 2021): 1350 GW of installed capacity 3400 power units 1300 power plants

lesian University

UNIVERSITY

- Assessment of the feasibility of conversion in accordance with the Coal-to-Nuclear pathway.
- 2. Determining the **coal-to-nuclear-readiness level (CtNRL)** can indicate the adequateness of the discussed option.
- 3. Entities responsible for the coal energy sources in question should make efforts to assess the CtNRL (different classes) and to obtain **Nuclear-Ready** status if it is possible.
- 4. Planned coal units, should be designed and build as Nuclear-Ready units, i.e., meeting all formal and technical requirements for the use of nuclear reactors in the future (most preferable using direct or indirect conversion pathway).

concept proposed by the Bartela-Gladysz-Haneklaus-Qvist team

Potential for the World Coal-to-Nuclear Readiness Level

Investments in coal energy in the world in the last 15 years (from 2007 to 2021): 1350 GW of installed capacity 3400 power units 1300 power plants

UNIVERSITY

Exemplary coal-to-nuclear readiness evaluation sheet of a plant in three classes

concept proposed by the Bartela-Gladysz-Haneklaus-Qvist team

Silesian University of Technology

Coal-to- Nuclear-Readiness									
Class C	Class B	Class A							
<100 MWth	100-250 MWth	>250 MWth							
>20 years	10-20 years	<10 years							
Brownfield	Brownfield to Repowering	Repowering to Retrofit							
<15%	15-25%	>25%							
Low	Medium	High							
High	Medium	Low							
High	Medium	Low							
	344								

Selected publications

- Qvist, S.; Gładysz, P.; Bartela, Ł.; Sowiżdżał, A. Retrofit Decarbonization of \bullet Coal Power Plants—A Case Study for Poland. *Energies* **2021**, *14*, 120. https://doi.org/10.3390/en14010120
- Bartela, Ł.; Gładysz, P.; Andreades, C.; Qvist, S.; Zdeb, J. Techno-Economic Assessment of Coal-Fired Power Unit Decarbonization Retrofit with KP-FHR Small Modular Reactors. *Energies* **2021**, *14*, 2557. https://doi.org/10.3390/en14092557
- Bartela, Ł.; Gładysz, P.; Ochmann, J.; Qvist, S.; Sancho, L.M. Repowering a Coal Power Unit with Small Modular Reactors and Thermal Energy Storage. Energies 2022, 15, 5830. https://doi.org/10.3390/en15165830
- Łukowicz, H.; Bartela, Ł.; Gładysz, P.; Qvist, S. Repowering a Coal Power Plant Steam Cycle Using Modular Light-Water Reactor Technology. *Energies* **2023**, *16*, 3083. <u>https://doi.org/10.3390/en16073083</u>

THANK YOU!

