

Politechnika Śląska w Gliwicach Katedra Maszyn i Urządzeń Energetycznych

ANALIZA INTENSYFIKACJI WYMIANY CIEPŁA FALĄ AKUSTYCZNĄ

Sebastian Rulik

Włodzimierz Wróblewski

Krzysztof Rusin

Mirosław Majkut

Zakres prowadzonych badań

Zaprezentowane badania stanowią podsumowanie prac mających na celu szczegółową analizę zjawisk występujących w rezonatorach akustycznych wraz z ocenę relacji pomiędzy parametrami generowanej fali akustycznej a warunkami wymiany ciepła w rejonie komory. Zakres prowadzonych badań obejmował wiele zadań oraz realizację celów szczegółowych, z których podstawowe to:

- opracowanie modeli CFD (dwuwymiarowe oraz trójwymiarowe),
- budowa stanowiska laboratoryjnego wraz ze specjalnym systemem pomiarowym obejmującym blok sygnałów wolno- oraz szybkozmiennych,
- wykonanie pomiarów dla szerokiego zakresu warunków przepływowych oraz ich porównanie z symulacjami numerycznymi
- wizualizacja pola przepływu przy wykorzystaniu metody typu schlieren zastosowana dla przepływów z niskimi liczbami Macha,
- analiza zjawisk cieplno-przepływowych dla różnych warunków przepływowych oraz konfiguracji geometrycznych komory,
- aplikacja rezonatora akustycznego do układu chłodzenia konwekcyjnego kanału typu "U".

Przepływ przez komory - przykłady

r = b r = b r = b r = b r = b r = b r = b $r = c_{e}$ $r = c_{e}$

Kamouni M., Tridimensional analysis of a Turbulent Flow through an Eccentric Short Labyrinth Seal, International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 19 No. 1 Jan. 2017, pp. 37-45

Oettle, Nicholas and Sims-Williams, David (2017) 'Automotive aeroacoustics : an overview.', Proceedings of the Institution of Mechanical Engineers. Part D : Journal of automobile engineering., 231 (9). pp. 1177-1189. Patinios, M., Scobie, J. A., Sangan, C. M., Owen, J. M., and Lock, G. D., 2017, "Measurements and Modeling of Ingress in a New 1.5-Stage Turbine Research Facility." ASME. J. Eng. Gas Turbines Power., 139(1): 012603

https://www.pcmag.com/news/nasa-tech-reduces-aircraft-noise-by-up-to-70-percent

Katedra Maszyn i Urządzeń Energetycznych

Mechanizm generacji dźwięku

Rossiter jako pierwszy zauważył, że częstotliwość drgań własnych komory jest związana z mechanizmem sprzężenia zwrotnego. Jego obserwacje przy wykorzystaniu metody smugowej wykazały obecność dużych struktur wirowych odpowiedzialnych za pulsacje ciśnienia w komorze. Ich interakcja z tylną ścianą komory powoduje powstanie impulsów ciśnienia, które przesuwając się w kierunku przedniej ściany komory, intensyfikują spływ kolejnych wirów. Część generowanych fal wydostaje się na zewnątrz komory i jest odpowiedzialna za generację hałasu.

Drugim typem rezonansu, który może pojawić się w omawianym przypadku przepływu, jest praca komory jako tzw. rezonator Helmholtza.

Zależność Rossitera

$$St = \frac{fL}{U_{\infty}} = \frac{m - \alpha}{Ma + \frac{1}{k}}$$

Stanowisko badawcze

Katedra Maszyn <u>i Urządzeń Energ</u>etycznych

www.kmiue.polsl.pl

5

Stanowisko badawcze

System przygotowania powietrza oraz stanowisko badawcze wraz z systemem pomiarowym

Katedra Maszyn i Urządzeń Energetycznych

Model obliczeniowy

w	Vlot	Prędkość: 30-80 m/s Temperatura statyczna: 15ºC Intensywność turbulencji: 1%
N	ylot Uśrednione ciśnienie statyczne: 1 bar	
Ś	Ściany kanału Adiabatyczne	
Ś	ciany komory	Adiabatyczne lub z uwzględnieniem przepływu ciepła przez założenie stałej temperatury ściany równej 120ºC (warunek Dirichleta)
P	Płyn Powietrze – gaz doskonały	
P	rzepływ ciepła	Równanie energii oparte na entalpiach spoczynkowych z uwzględnieniem pracy związanej z występowaniem naprężeń stycznych
N tu	1odel urbulencji	SST lub metoda DES

Katedra Maszyn i Urządzeń Energetycznych

Wzbudzenie fluktuacji ciśnienia akustycznego przy prędkości przepływu w kanale 50 m/s – model 1

Katedra Maszyn i Urządzeń Energetycznych

Wyniki obliczeń

2D k-ω SST (model 1) 160 –Punkt D —Punkt P –Punkt L 140 120 **8b**, 100 80 60 40 0 1000 2000 3000 4000 5000 *f,* Hz 300 -Punkt D -Punkt P -Punkt L 250 200 150 100 50 *p'*, Pa 0 -50 -100 -150 -200 -250 -300 0 10 12 14 16 18 20 t, ms

Katedra Maszyn i Urządzeń Energetycznych

Wyniki obliczeń

3D k-ω SST 500 400 —Punkt D -Punkt P —Punkt L -Punkt D -Punkt P -Punkt L 400 300 300 200 200 100 100 **م**', Pa *p'*, Pa 0 v=80 m/s -100 -200 -200 -300 -300 -400 -400 -500 1.0 2.0 3.0 4.0 5.0 0.0 4.5 5 0 0.5 1.5 3.5 1 2 2.5 3 4 *t,* ms *t,* ms Obliczenia Eksperyment Р L D

Katedra Maszyn i Urządzeń Energetycznych

Wyniki obliczeń

Rozkład wirowości prędkości oraz ciśnienia akustycznego.

Katedra Maszyn i Urządzeń Energetycznych

Wizualizacja pola przepływu

Katedra Maszyn <u>i Urz</u>ądzeń Energetycznych

www.kmiue.polsl.pl

12

Wizualizacja pola przepływu

v=50 m/s f=1235 Hz

Katedra Maszyn i Urządzeń Energetycznych

Analiza wymiany ciepła

Politechnika Śląska

Katedra Maszyn <u>i Urządzeń En</u>ergetycznych

www.kmiue.polsl.pl

14

Analiza wymiany ciepła

Średnie wartości współczynnika wnikania ciepła

Katedra Maszyn i Urządzeń Energetycznych

Optymalizacja kształtu

Katedra Maszyn i Urządzeń Energetycznych

Aplikacja rezonatora w kanale typu "U"

Warunki brzegowe			
Wlat	Prędkość: 50 m/s		
WIOL	Temperatura statyczna: 573 K		
Wylot	Uśrednione ciśnienie statyczne: 15 bar		
Ściana	Adiabatyczna		
Ściany L, R, DA, DB	Interfejs płyn-ciało stałe		
Zewnętrzna ściana metalu	HTC: 300 W(m ² K)		
	Temperatura zewnętrzna: 1273 K		
Pozostałe założenia			
Płyn	Powietrze – gaz doskonały		
	Równanie energii oparte na entalpiach		
Przepływ ciepła	spoczynkowych z uwzględnieniem pracy		
	sił lepkościowych		
Model turbulencji	k-ω SST		
Kontrola kroku czasowego (tylko dla rozwiązania	Obszar ciała stałego – krok fizyczny 0.5 s		
stacjonarnego)	Obszar płynu – krok fizyczny 10 ⁻⁵ s		
Krok czasowy (tylko dla analizy niestacjonarnej)	10 ⁻⁵ s		

Katedra Maszyn i Urządzeń Energetycznych

Aplikacja rezonatora w kanale typu "U"

Shen Z., Xie Y. Zhang D., Experimental and numerical study on heat transfer in trailing edge cooling passages with dimples/protrusions under the effect of side wall slot ejection, International Journal of Heat and Mass Transfer, vol. 92, 2016, p. 1218-1235

--- Temperatura płynu - punkt D --- Temperatura metalu - TDa --- Temperatura metalu - TDb

Aplikacja rezonatora w kanale typu "U"

Dla wariantu referencyjnego temperatura na brzegach metalu zmienia się w zakresie 1085-1149 K, dla natomiast wariantu 7 komorą zastosowaną jest to odpowiednio 989-1025 K. Przy wzięciu pod uwagę bezwzględnej wartości temperatury aplikacja komory rezonansowej prowadzi do spadku maksymalnej temperatury metalu aż o 124 K.

Katedra Maszyn i Urządzeń Energetycznych

Podsumowanie

- Przedstawione badania rozwijają obecny stan wiedzy, w szczególności jeśli chodzi o analizę generacji oraz propagacji dźwięku w kanałach zamkniętych, których przekrój jest zbliżony do wielkości rezonatora akustycznego.
- Zasadniczą częścią pracy było uzupełnienie prowadzonych badań z zakresu aeroakustyki o relację pomiędzy niestacjonarnym polem przepływowym w obszarze rezonatora akustycznego a warunkami wymiany ciepła.
- Uzyskane rezultaty badań pozwoliły na aplikację omawianego rozwiązania w uproszczonym modelu kanału typu "U", który jest stosowany w układzie chłodzenia konwekcyjnego łopatki turbinowej.
- Kierunkiem dalszych badań będzie przede wszystkim walidacja eksperymentalna przeprowadzonych symulacji numerycznych dotyczących warunków wymiany ciepła w komorze rezonansowej oraz pomiar pola prędkości przy wykorzystaniu systemu laserowej anemometrii dopplerowskiej.

Dziękuję za uwagę!

Politechnika Śląska

Katedra Maszyn i Urządzeń Energetycznych