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Abstract

Background Telomeres, which are composed of repetitive nucleotide sequences at the end of chromosomes,
behave as a division clock that measures replicative senescence. Under the normal physiological condition, telomeres
shorten with each cell division, and cells use the telomere lengths to sense the number of divisions. Replicative
senescence has been shown to occur at approximately 50–70 cell divisions, which is termed the Hayflick’s limit.
However, in cancer cells telomere lengths are stabilized, thereby allowing continual cell replication by two known
mechanisms: activation of telomerase and Alternative Lengthening of Telomeres (ALT). The connections between the
two mechanisms are complicated and still poorly understood.
Results In this research, we propose that two different approaches, G-Networks and Stochastic Automata Networks,
which are stochastic models motivated by queueing theory, are useful to identify a set of genes that play an
important role in the state of interest and to infer their previously unknown correlation by obtaining both stationary
and joint transient distributions of the given system. Our analysis using G-Network detects five statistically significant
genes (CEBPA, FOXM1, E2F1, c-MYC, hTERT) with either mechanism, contrasted to normal cells. A new algorithm is
introduced to show how the correlation between two genes of interest varies in the transient state according not
only to each mechanism but also to each cell condition.
Conclusions This study expands our existing knowledge of genes associated with mechanisms of telomere
maintenance and provides a platform to understand similarities and differences between telomerase and ALT in
terms of the correlation between two genes in the system. This is particularly important because telomere dynamics
plays a major role in many physiological and disease processes, including hematopoiesis.
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Background
The introduction of Stochastic Automata Networks
(SANs) [1] has led researchers to explore an efficient solu-
tion of finite multi-component Markov chains of poten-
tially very high dimension. The main idea of the SAN
formalism is to employ Kronecker algebra operations for
generating the infinitesimal generator (also known as an
intensity matrix or transition rate matrix) of a Markov
chain in a product form in order to ease the problem of
dimensionality and the complexity of the vector-matrix
product [2, 3]. Specifically, a compact representation
using tensor product and sums of matrices of the form,
which is formally proved in [1]

Q =
N⊕

i=1
Li +

R∑

r=1

( N⊗

i=1
Mr,i +

N⊗

i=1
Nr,i

)
, (1)

provides the transition rates of a time-continuous Markov
chain of the type just described. Notation: N is the num-
ber of automata, R is the number of synchronizations, and
Li and Mr,i are matrices containing information about the
local transitions and the effect of the synchronization r
on the automaton i, respectively. Nr,i is the normalizing
matrix of Mr,i, and ⊗ and ⊕ denote, respectively, the (gen-
eralized) tensor product and tensor sum [4]. Notation will
be discussed in detail in the following section.

For a decade after SAN introduction, many outstanding
analytical results have been proved. For example, Plateau
and Stewart [5] proved in year 2000 that a product-form
steady-state distribution for SANs without synchroniza-
tions exists, as long as some numerical conditions related
to local balance are satisfied. Prior to that, Boujdaine et al.
in 1997 [6] considered a special class of SAN having lim-
ited synchronization, and proved a sufficient condition for
existence of stationary distribution, by applying proper-
ties of Kronecker sum. Note that classic queuing networks
such as Jackson’s networks and G-Networks with positive
and negative customers [7] fall under this special class.

Most analyses and applications of SANs focus on find-
ing steady-state distribution of queuing system models.
To our knowledge, correlation analysis in SANs is rarely
examined, although correlation quantifies the degree of
inter-relatedness of two automata. It contributes to the
understanding of how the association of two automata
changes with time according to the state of interest, with
the behavior of other automata in the system simulta-
neously considered. In the current study, we first exam-
ine the exact-form of an infinitesimal generator for G-
Networks with positive and negative customers. Then it
is applied to a gene regulatory network (GRN) having five
genes related to the onset of cancer in order to show the
time-dependent dynamics of transition rates and correla-
tion between two particular genes of interest. Through-
out this paper, our analysis is based on time-continuous

Markov chains, but we note that most results are valid
in the time-discrete case provided complications such as
periodicity are excluded.

Stochastic automata network
The SAN consists of a number of automata, which are cor-
related by synchronizing transitions. Each automaton has
states and transitions. The state space of the system is the
Cartesian product of the states of the automata [6]. There
exist two types of transitions: local and synchronizing.

1. Transition in one automaton may initiate a new
simultaneous transition in another automaton. Such
transitions are collectively referred to as
synchronizing transitions. In one synchronizing
transition, two automata are paired. The first is called
a master automaton; it affects the state of another
automaton as its state changes. The second is called a
slave automaton; it is affected by its master
automaton [8].

2. In any given automaton, transitions not classified as
synchronizing transitions are local transitions. Such
transitions only change the state of one automaton.

In the SAN, two assumptions are made. First, the time
to transition is exponentially distributed, and second, that
a multidimensional Markov chain represents the SAN,
although a particular automaton may not be Markovian
itself. Then the (global) infinitesimal generator (the matrix
of time derivatives at 0 of the transition probabilities),
which reflects a change in transition probability from one
state to another, is given by Eq. 1, with notation explained
in Table1.

Specifically, each matrix in Q is defined as follows:

• Li is a local normalized transition rate matrix of
automaton i; thus

Li[ m, n] ≥ 0 if m �= n and
N∑

n=1
Li[ m, n] = 0

Table 1 Description of the notation in Eq. 1

Notation Definition

N Number of automata in the network

K Number of states, where the state space of
each automaton is {0, 1, · · · , K − 1}

R and r Number of synchronizing events and an
index of each event, respectively

Li Local transition rate matrix (normalized) of
the automaton i

Mr,i Effect matrix corresponding to the rth syn-
chronizing event acting on the automaton
i

Nr,i Normalizing matrix needed for the tensor
product of Mr,i to constitute a transition rate
matrix
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• For each synchronizing transition, for all
i ∈ {1, 2, · · · , N}, Mr,i = IK , where IK is an identity
matrix of size K , except for the case when r is two
indices corresponding to master and slave
automaton. Therefore
N⊗

i=1
Mr,i = IK ⊗ · · · ⊗ IK ⊗ (

Dr,msr(r) − D̄r,msr(r)
)

⊗ IK ⊗ · · · ⊗ IK ⊗ Er,sl(r) ⊗ IK ⊗ · · · ⊗ IK

where msr(r) and sl(r) are indices for master
automaton and slave automaton, respectively, in the
rth synchronization. Here, Dr,msr(r) denotes the
transition rate matrix due to the rth synchronizing
event on the master automaton, and D̄r,msr(r) is its
diagonal matrix. Er,sl(r), the transition probability
matrix, is the effect of the rth synchronizing event on
the automaton sl(r).

Dr,msr(r)[ m, n] ≥ 0 if m �= n and
N∑

n=1
Dr,msr(r)[ m, n] = 0 , ∀ m

Er,sl(r)[ m, n] ≥ 0 ∀ m, n and
N∑

n=1
Er,sl(r)[ m, n] = 1 , ∀ m

• A normalizing matrix
⊗N

i=1 Ni,r is a(
KN × KN)-dimensional diagonal matrix, whose the

lth diagonal element is the negative sum of the lth row
of
⊗N

i=1 Mr,i.

G-Networks with positive and negative customers
Gelenbe- or G-Networks [9], devised by Erol Gelenbe, are
Markovian stochastic models grounded in queueing net-
work theory [10]. They were extensively applied to study
probability models of various objects [11–18]. However
they are particularly appropriate to construct GRNs, as
they introduce a novel notion called a ‘negative customer’,
which can be biologically interpreted as a repression sig-
nal [19]. G-Networks model the number of positive cus-
tomers, which is mRNA expression level biologically, in an
automaton or a gene having an infinite state space. Pos-
itive and negative customers synchronously move from a
master gene to a slave gene within the system with transi-
tion probabilities, p+

msr(r),sl(r) and p−
msr(r),sl(r), respectively.

It implies that there are two types of the synchronizing
transition. Note that the behavior of positive customers
identical to that of positive customers in Jackson networks
[20]. In contrast, negative customers function distinctively
as follows: they are not accumulated and instantaneously
leave a queue after the completion of their tasks. If a neg-
ative customer arrives at a non-empty queue, it destroys
one current positive customer. However if the queue is
empty, then the negative customer disappears without
locally affecting the queue. Both types of customers arrive
at the ith gene from outside of the system at rates λ+

i

and λ−
i , respectively. It is assumed that service disciplines

are the same for all queue [21], and the service times for
each queue i are independent and identically exponen-
tially distributed with rates μi ∈ (0, ∞) for i = 1, 2, · · · , N .
Figure 1 visually illustrates four activities of mRNA and/or
protein molecules, and Table 2 suggests how the biological
terms that refer to these activities can be identified with
those used in G-Networks.

G-Networks have an advantageous property of being
analytically tractable because of the existence of product-
form stationary distributions under the typical Markov
Chain assumptions as shown in Eq. 2 [7, 22].

Let x = {x1, x2, · · · , xN } be the vector of non-
negative integers representing the state of the net-
work. Then the time-dependent vector, {x(t) : t ≥ 0}, is a
continuous-time Markov chain, which satisfies the system
of Chapman-Kolmogorov equations [23]. Element xi(t),
1 ≤ i ≤ N , of vector x(t) = (x1(t), x2(t), · · · , xN (t)), is the
number of customers (or the mRNA expression level) of
gene i at time t. It has been proved that the joint steady-
state distribution π (x) of x(t), has the form of a product
of stationary distributions of each queue,

π (x) = lim
t→∞ P (X(t) = x) =

N∏

i=1
(1 − qi) · qxi

i (2)

each satisfying the balance equation of the G-Networks
[23–25], i.e.

qi = lim
t→∞ P (xi(t) > 0)= λ+

i + ∑N
j=1 qj · μj · p+

ji

μi + λ−
i + ∑N

j=1 qj · μj · p−
ji

> 0,

(3)

for i = 1, 2, · · · , N . It implies that the stationary proba-
bility for each positive recurrent state is expressed in the
terms of a product of functions depending solely on the
state of a single queue.

According to [8], matrices constituting the global
infinitesimal generator Q are defined as follows in the

Fig. 1 Four activities for gene regulation in a G-network model
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Table 2 Vocabulary and notation for application of G-Networks
to Gene Regulatory Networks

Biology G-Networks Notation

Gene Node where customers are
stored

i

Signals/notch in the scale of the
gene activity information [19]

Positive/negative
customers

mRNA expression level The number of positive
customers

xi

Translation / protein bursting Arrival rate of positive cus-
tomers from the outside of
the system

λ+
i

Degradation Arrival rate of negative cus-
tomers from the outside of
the system

λ−
i

Activation / transcription Transition probabilities of
positive customers

p+
ij

Repression Transition probabilities of
negative customers

p−
ij

Signals not influencing the gene
activity

Customers that exit the
system

di

Protein-protein interaction Service rate μi

The first and second columns contain biological and G-Networks terminologies of
gene regulation, respectively. The third column includes the corresponding
notations used in this study. The subscript i indicates the ith gene

terms of customer-related rates:

Li = λ+
i
(
Upp − I0

K
) + μidi

(
Low − I0

1
) + λ−

i
(
Low − I0

1
)

, ∀ i ∈ N

Dr,msr(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μi · p+
msr(r),sl(r) · (Low − I0

1
)

, if a customer leaves a master automaton
and moves to a slave automaton as a positive customer
μi · p−

msr(r),sl(r) · (Low − I0
1
)

, if a customer leaves a master automaton
and moves to a slave automaton an as a negative customer

Er,sl(r) =
⎧
⎨

⎩
Upp , if a positive customer arrives at a slave automaton sl(r)
Low , if a negative customer arrives at a slave automaton sl(r)

N⊗

i=1
Nr,i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

IK ⊗ · · · ⊗ IK ⊗ D̄r,msr(r) ⊗ IK ⊗ · · · ⊗ IK ⊗ I0
K ⊗ IK ⊗ · · · ⊗ IK

, if a slave automaton receives a positive customer
IK ⊗ · · · ⊗ IK ⊗ D̄r,msr(r) ⊗ IK ⊗ · · · ⊗ IK ⊗ I0

1 ⊗ IK ⊗ · · · ⊗ IK

, if a slave automaton receives a negative customer

where

• I : Identity matrix
• Upp : Matrix with entries 0 except the main upper

diagonal which is 1
• Low : Matrix with entries 0 except the main lower

diagonal which is 1
• I0

1 : Identity matrix except the first diagonal element
which is 0

• I0
K : Identity matrix except the Kth diagonal element

which is 0

Results
This section consists of two parts. The first part shows the
mathematical result that derives the correlation between
two genes utilizing Kronecker algebra. The second part
contains the biological results based on the application of
the mathematical result to the gene regulatory network
associated with telomere biology.

Mathematical result: derivation of joint transient
distribution of two automata
If Q is the infinitesimal generator and P(t) is the transition
probability matrix of a finite Markov chain, we can derive
a set of differential equations called Kolmogorov’s forward
equations, in the form of P′(t) = P(t) · Q. Solution of the
forward equation is given in this case by the power series
expansion that converges for any square matrix Q:

P(t) = eQt =
∞∑

n=0

(Qt)n

n!
. (4)

The resulting
(
1 × KN)-dimensional time-dependent

state probability vector at time t has the form

π(t) = π(0) · eQt (5)

where π(t) is a state probability vector at time t [26]. In
order to find a joint state probability vector πi,j(t) of two
automata, say i and j, we introduce two matrices Ci,j and
C∗

i,j, which are
(
KN × K2)- and

(
K2 × KN)-dimensional,

respectively. After several steps of calculation, we obtain

πi,j(t) = π(t)︸︷︷︸
1 × KN

· Ci,j︸︷︷︸
KN × K2

⇒ C∗
i,j · Ci,j · eQi,j t = C∗

i,j · eQ t · Ci,j , (6)

where, for all i �= j , i, j = 1, 2, · · · , N , Ci,j and C∗
i,j are

defined by

Ci,j︸︷︷︸
KN × K2

=
N⊗

n=1
Ui,j,n , Ui,j,n =

{
IK , if n = i or n = j
1K , if n �= i and n �= j

C∗
i,j︸︷︷︸

K2 × KN

=
N⊗

n=1
Vi,j,n , Vi,j,n =

{
IK , if n = i or n = j
1T

K , if n �= i and n �= j .

Note that the (1 × K)-dimensional matrix 1T
K =[

1 1 · · · 1
]

indicates the matrix transpose of 1K . This
results in

C∗
i,j · Ci,j =

( N⊗

n=1
Vi,j,n

)
·
( N⊗

n=1
Ui,j,n

)
= KN−2 · IK2 ,

(7)

where

Vi,j,n · Ui,j,n =
{

IK , if n = i or n = j
K (a scalar) , if n �= i and n �= j .
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Therefore Eq. 6 finally becomes

eQi,j·t = 1
KN−2 · C∗

i,j · eQ t · Ci,j . (8)

Equation 8 implies that a time-dependent joint state prob-
ability vector πi,j(t) can be easily calculated, once the
infinitesimal generator, Q, of the entire system is obtained.

πi,j(t) = πi,j(0) · eQi,j·t

= 1
KN−2 · πi,j(0) · C∗

i,j · eQt · Ci,j

= {
p0,0(t), p0,1(t), p0,2(t) · · · ,

pK−1,K−2(t), pK−1,K−1(t)
}

(9)

We can then form a (K × K)-dimensional table that
describes the joint probabilities for each time point t.
Based upon it, the association between two genes for all
t is evaluated using the Pearson product-moment correla-
tion coefficient [27]. It implies the correlation of a pair of
genes in the regulatory system varies by each time (each
generation of cells) as shown in Fig. 2.

Application to the gene regulatory networks
GRNs and parameters from g-Networks
In this research, we use a GRN provided in Fig. 3. It con-
sists of 5 statistically significant genes associated with
telomere maintenance, which are discovered by (mod-
ified) Abnormal Pathway Detection Algorithm (APDA)
based on G-Networks [18]. (See Methods for detailed
information on the modification). We explore the corre-
lation between a pair of genes, e.g., CEBPA and hTERT,

which is not apparent from Fig. 3. On the biology side, Kir-
wan et al. in 2009 [28] reported that mutations in hTERT
within 4 of 20 families were identified in familial acute
myeloid leukemia (AML). It is known that the mutation
of CEBPA is one of the important factors in AML and its
prognosis [29]. However the direct relationship between
CEBPA and AML is still not satisfactorily understood. The
joint state probability vector of two genes, which can be
calculated from Eq. 9, is expected to show the flow of
probabilities for the K2–tuples of mRNA expression levels
at each fixed time t, and thereby illustrates the relationship
between any two genes.

In this case, the number of automata is equal to N = 5,
while the number of synchronizing events is equal to R =
7. We limit the number of gene expression levels to K =
7 for two reasons. The first is that, because the data are
normalized, there are few genes with a mRNA expression
level of 7 or higher. Furthermore, the memory limitations
enforce it. In this paper, we assume that pairs of genes are
highly positively correlated at the initial time point; that is

pij(0) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
47

1
47 0 0 0 0 0

1
47

5
47

1
47 0 0 0 0

0 1
47

5
47

1
47 0 0 0

0 0 1
47

5
47

1
47 0 0

0 0 0 1
47

5
47

1
47 0

0 0 0 0 1
47

5
47

1
47

0 0 0 0 0 1
47

5
47

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that this matrix needs to be transformed into
a
(
1 × K2)-dimensional joint state probability vector as

Fig. 2 The correlation of a pair of genes. The correlation of a pair of genes can be either positive (green solid line) or negative (red dashed line). The
thicker line represents the stronger correlation of two connected genes, while the thinner line indicates the weaker correlation of them
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Fig. 3 A network with 5 automata (genes) and 7 synchronizing transitions

πij(t) in Eq. 9. Tables 3 and 4 exhibit the values of
parameters that are required to build the infinitesimal
generator Q. They are estimated and optimized accord-
ing to the APDA [18] based on G-Networks. Specifically,
values in Table 3 allow to calculate a joint probabil-
ity vector πi,j(t), under the normal condition, with the
Table 4 contains information for malignant (ALT or active

telomerase) cells. The three families of parameters, λ+
i ,

λ−
i and μi for all i, are identical for both normal and

ALT cells, while transition probabilities, p+
ij , p−

ij and di,
are different between the cell types. Transition probabil-
ities are deciding factors in correlation coefficients based
on Eq. 9 and the rates of convergence to stationarity in
G-Networks.

Table 3 Values of the parameters needed to determine the infinitesimal generator (Q) using 4 normal cell lines, where

di = 1 − ∑N
j=1

(
p+

ij + p−
ij

)

Translation (λ+
i ) Degradation (λ−

i ) μi di

CEBPA 4 1.18489 3 0.333

E2F1 4 1.79118 3 0.333

FOXM1 4 2.78510 2 0.5

c-MYC 5 6.70809 3 0.333

hTERT 5 6.07682 1 1

Normal: Activation/transcription processes (p+
ij )

CEBPA E2F1 FOXM1 c-MYC hTERT

CEBPA 0 0 0 0 0

E2F1 0 0 0 0.333 0

FOXM1 0 0 0 0.5 0

c-MYC 0 0 0 0 0.333

hTERT 0 0 0 0 0

Normal: Repression process (p−
ij )

CEBPA E2F1 FOXM1 c-MYC hTERT

CEBPA 0 0.333 0.333 0 0

E2F1 0 0 0 0 0.333

FOXM1 0 0 0 0 0

c-MYC 0.333 0 0 0 0

hTERT 0 0 0 0 0

The “service” (or firing) rate of gene i, denoted by μi , represents the protein–protein interactions, e.g., phosphorylation and ubiquitination. Gene i activates and inhibits gene j
with probability p+

ij and p−
ij , respectively. Genes in the rows correspond to the “starting” genes, while those in columns to the ending genes
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Table 4 Values of the parameters that are needed to determine the infinitesimal generator (Q) using 18 ALT cell lines

Translation (λ+
i ) Degradation (λ−

i ) μi di

CEBPA 4 1.18489 3 0.5433
E2F1 4 1.79118 3 0.1258
FOXM1 4 2.78510 2 0.2417
c-MYC 5 6.70809 3 0.0280
hTERT 5 6.07682 1 1
ALT: Activation/transcription processes (p+

ij )
CEBPA E2F1 FOXM1 c-MYC hTERT

CEBPA 0 0 0 0 0
E2F1 0 0 0 0.5574 0
FOXM1 0 0 0 0.7583 0
c-MYC 0 0 0 0 0.3855
hTERT 0 0 0 0 0
ALT: Repression process (p−

ij )
CEBPA E2F1 FOXM1 c-MYC hTERT

CEBPA 0 0.2268 0.2230 0 0
E2F1 0 0 0 0 0.3168
FOXM1 0 0 0 0 0
c-MYC 0.5865 0 0 0 0
hTERT 0 0 0 0 0
The definitions and representations of di , μi , p+

ij and p−
ij are the same as in Table 3

Simulation study using estimated parameters
Estimated and/or assumed values of the parameters listed
in Tables 3 and 4 determine the infinitesimal generator, Q,
and the steady-state distribution of each gene. Developed
on the global balance equation of G-Networks [23] and the
exponentially-distributed holding times of Markov chains
[30], the empirical cumulative density function (ECDF)
was exploited to confirm that parameter estimation via
the APDA is appropriate aligning with the theory of G-
Networks. We compare the ECDF of simulated data utiliz-
ing values in Tables 3 and 4 and the theoretical cumulative
density function (CDF) based on qi in Eq. 3. The algorithm
for the simulation is explained in detail in Methods.

The ECDF, usually denoted by F̂n(x), is associated with
cumulative frequency of observations (empirical sampled
data). It is a non-parametric estimator of the underly-
ing CDF of a random variable of interest and is formally
defined as follows:

F̂n(x) = P̂n (X ≤ x) = 1
n

·
n∑

i=1
1[xi≤x] ,

where 1[·] is an indicator function. That is, the ECDF
is a step function that increases by 1

n at each datum.
The stationary probability distribution of each gene in G-
Networks is in the geometric product-form as stated in
Eq. 2, which results in the following tail of the theoretical
CDF, T (xi):

T (xi) = 1 − F (xi) = 1 −
(

1 − qxi+1
i

)
= qxi+1

i . (10)

Figure 4 (and Fig. 9) illustrates how the ECDF of hTERT
utilizing estimated/assumed values of the parameters
(Tables 3 and 4) converges to the theoretical CDF regard-
less of cell types. Similar patterns are obtained for all 5
statistically significant genes in this research.

Correlation between a pair of genes
We discuss the similarities or differences in the correlation
of two genes between normal and malignant cells with
either active telomerase or ALT. Figure 5 based on Eq. 9
illustrates the following:

• First, Fig. 5 demonstrates the change of correlation
between a pair of genes in the given system over time
in normal cells and ALT (malignant) cells. We can
then infer both the trend of correlation between a
pair of genes and the speed to the transient state, i.e.,
before it reaches a steady state. Due to the
product-form stationary probability distribution of
network state in the theory of G-Networks, the
correlation coefficient becomes 0 when the system
becomes stationary [31]. Assuming that the pair of
genes are positively correlated at time 0, the positive
correlation persists over time in both types of cells
(normal and ALT) and practically reaches 0 (the
steady state) approximately at t = 0.8. As shown in
the figure, the patterns of correlation between each
pair of genes do not noticeably differ among the types
of cells (normal or malignant with either ALT or
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Fig. 4 ECDF plots of hTERT under the normal condition (top) and ALT (malignant) condition (bottom). Orange and green straight and thick lines
represent theoretical (logarithmically transformed) CDF of normal and ALT conditions, respectively. Purple, blue (thin) and red (thick) lines serve as
the logarithmically transformed ECDF of hTERT after 10 steps, 100 steps and 500 steps, respectively

active telomerase shown), although they are
dissimilar from one pair to another within the same
type of cells. For example, the correlation between
CEBPA and FOXM1 in a transient state is stronger
than that of c-Myc and hTERT, and it reaches a
steady state more slowly in all cell types.

• Second, Eq. 9 uncovers the interactions between (1)
CEBPA and hTERT, (2) FOXM1 and hTERT and (3)
FOXM1 and E2F1, which are unknown in Fig. 3. The
pattern in Fig. 5, which is analogous to Fig. 7,
delineates that the relationship of the three pairs of
genes is similar regardless of the mechanisms by
which telomeres maintain their sufficient lengths.
However, within the same condition of cells, the

Fig. 5 Trend of correlation between each pair of genes in the system
over time in ALT (malignant) cells. The general relationship of two
genes in the system is similar regardless of the mechanism by which
telomeres maintain their sufficient lengths. However, within the same
condition of cells, the magnitude of correlation and the speed to the
steady state vary by interactions

magnitude of correlation and the speed to the steady
state vary by interactions. It is supported by the
interaction of CEBPA and hTERT, which is relatively
weaker than that of other pairs, even though its trend
over time is indistinguishable by the cell types.

Note that if we conversely assume that a pair of genes
are highly negatively correlated at the initial time point,
then the negative correlation prevails over time as shown
in Fig. 8.

Discussion
One important advantage of using mathematical model-
ing to understand dynamics of a biological system is that
the model can be a cost-effective and time-saving supple-
ment or even a substitute for laboratory experiments in
which patterns of the system are delicate and complex.
Especially the stochastic approach is useful to quantify the
role of fluctuations in the behavior of the system of inter-
est. In this paper, we propose that a stochastic paradigm
involving G-Networks and Stochastic Automata Networks
both stemming from queuing theory, can contribute to
the analysis of similarities and differences between telom-
erase activation and ALT using genes related to telom-
ere maintenance. However, there are the following two
caveats.

• First, correlation coefficient, whose sign relies upon
the initial joint state probability vector πij(0) in our
example, evaluates the strength of the evidence for a
relationship of two genes but does not determine
causal relationships. In other words, even if a positive
correlation between CEBPA and hTERT in ALT cells
is revealed, it is not known which gene activates
another one.
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• Second, the dimension of the infinitesimal generator,
Q, which is a function of tensor products, can be
enormously large, with the corresponding matrix
being sparse depending on the number of states of
each queue. The state space used in this research is
relatively small. Computations in larger dimensions
can be made practical by using Compressed Sparse
Row and a number of methods for the approximation
of the matrix exponential [32] such as Krylov-type
techniques.

Conclusion
In spite of the caveats discussed in the previous section,
the APDA based on G-Networks initially introduced in
[18] can suggest a set of statistically significant genes
(CEBPA, FOXM1, E2F1, c-MYC, hTERT) in cells with
either telomerase or ALT compared to normal cells from
preexisting GRNs. We further confirmed that the APDA
satisfactorily estimates the parameters, which decide
the rates of convergence to stationarity as the ECDF
of the simulated data using the estimated parameters
approaches to theoretical CDF using qi∈{1,2,··· ,N} as time
progresses. Further, our correlation analysis based on
SANs helps to infer the link between genes in vari-
ous conditions that has not yet been discovered through
experiments. We prove that our mathematical expression
(Eq. 9) allows analytically calculating the correlation coef-
ficients between any pair of genes in the given system
at every time point and compare them in various types
of cells for an order relation. Specifically in our exam-
ple, the trend of correlation among genes in the system
is not influenced by the mechanism (telomerase vs. ALT)
by which telomeres maintain their sufficient lengths, even
though the trend differs from one pair to another within
the same type of cells. To conclude, this study provides a
platform to detect significant genes and infer the previ-
ously unknown connection among them by applying mod-
eling techniques borrowed from queueing theory. This is
particularly important because telomere dynamics plays a
major role in many physiological and disease processes,
including hematopoiesis.

Methods
Detailed proof of Eq. 9
If Q is the infinitesimal generator and P(t) is the transition
probability matrix of a finite Markov chain, we can derive
a set of differential equations called Kolmogorov’s forward
equations, in the form of P′(t) = P(t) · Q

d
dt

P(t) ≡ P′(t) = P(t) · Q .

P(0) initial condition is P(0) = I, where I is an identity
matrix having the same dimension as Q [33], consistent

with

pij(0) =
{

P ( X(0) = i | X(0) = i ) = 1 , if i = j
P
(

X(0) = j | X(0) = i
) = 0 , if i �= j

Solution of the forward equation for finite Markov chains
is given by the power series expansion that always con-
verges for any square matrix Q:

P(t) = eQt =
∞∑

n=0

(Qt)n

n!
(11)

= I + Qt + (Qt)2

2!
+ (Qt)3

3!
+ (Qt)4

4!
· · ·

≈ I + Qt + (Qt)2

2!
+ (Qt)3

3!
+ ‖H(t)‖.

where ||·|| denotes l1-norm, and H(t) is is a linear operator
with || H(t) || = o(t), as t → 0. When the infinitesi-
mal generator, Q, is irreducible, its transition probability
matrix, P(t) defined in Eq. 11, is strictly positive for each
time t > 0. It signifies that as the trajectory length N
approaches to the limit, at least one transition between
any pair of states will almost surely happen without regard
to the sparsity of Q [34]. Note that 0 = π · Q are a set
of |S| linear equations, which is usually used to detect the
stationary distribution π , if such one exists [26].

A formal solution to the time dependent state probabil-
ity vector is defined as

π(t) = π(0)︸︷︷︸
1 × KN

· eQt
︸︷︷︸

KN × KN

(12)

where π(t) is a state probability vector at time t [35, 36].
In order to find a joint state probability vector πi,j(t) of
two automata, say i and j, we introduce two matrices
called Ci,j and C∗

i,j, which are
(
KN × K2)- and

(
K2 × KN)-

dimensional matrices, respectively. Then based on Eq. 12,
we achieve

πi,j(t) = π(t)︸︷︷︸
1 × KN

· Ci,j︸︷︷︸
KN × K2

⇒ πi;j(0) · eQi,j t = π(0) · eQ t · Ci,j

⇒ π(0) · Ci,j · eQi,j t = π(0) · eQ t · Ci,j

⇒ Ci,j · eQi,j t = eQ t · Ci,j

⇒ C∗
i,j · Ci,j · eQi,j t = C∗

i,j · eQ t · Ci,j

(13)

Here, Ci,j and C∗
i,j are defined as follows respectively:

Ci,j︸︷︷︸
KN × K2

=
N⊗

n=1
Ui,j,n , ∀ i �= j , i = 1, 2, · · · , N , j = 1, 2, · · · , N

where

Ui,j,n =
{

IK , if n = i or n = j
1K , if n �= i and n �= j
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and

C∗
i,j︸︷︷︸

K2 × KN

=
N⊗

n=1
Vi,j,n , ∀ i �= j , i = 1, 2, · · · , N , j = 1, 2, · · · , N

where

Vi,j,n =
{

IK , if n = i or n = j
1T

K , if n �= i and n �= j .

Note that 1T
K indicates the matrix transpose of 1K , and

we have

1K︸︷︷︸
K × 1

=

⎡

⎢⎢⎢⎣

1
1
...
1

⎤

⎥⎥⎥⎦ and 1T
K︸︷︷︸

1 × K

= [
1 1 · · · 1

]
.

This results in

C∗
i,j · Ci,j =

( N⊗

n=1
Vi,j,n

)
·
( N⊗

n=1
Ui,j,n

)

=
N⊗

n=1
Vi,j,n · Ui,j,n

= KN−2 · IK2

where

Vi,j,n · Ui,j,n =
{

IK , if n = i or n = j
K (a scalar) , if n �= i and n �= j

Therefore Eq. 13 finally becomes

KN−2 · IK2 · eQi,j·t = C∗
i,j · eQ t · Ci,j

⇒ eQi,j·t = 1
KN−2 · C∗

i,j · eQ t · Ci,j

(14)

Equation 14 implies that a time-dependent joint state
probability vector πi,j(t) can be easily calculated, once
the (global) infinitesimal generator of the entire system is
obtained.

πi,j(t) = πi,j(0)
︸ ︷︷ ︸
1 × K2

· eQi,j·t
︸︷︷︸

K2 × K2

= 1
KN−2 · πi,j(0) · C∗

i,j · eQt · Ci,j

(15)
Once πi,j(t) of two genes is obtained, we then can form a
(K × K)-dimensional contingency table that describes the
joint probability for each time point t. Based upon it, the
association between two genes for all t is evaluated using
the Pearson product-moment correlation coefficient.

Application to telomere maintenance
Data description
Gene expression data (GSE14533) were obtained from
the National Center for Biotechnology Information Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/).
Data includes expression gene levels of 3 types of cells: 18

Table 5 Mean mRNA expression levels (normalized and scaled)
of genes in normal and ALT cells

Normal ALT Mean diff. P-value

CEBPA (Gene 1) 4.724 2.617 2.107 0.003*

E2F1 (Gene 2) 2.475 3.117 -0.642 0.029*

FOXM1 (Gene 3) 2.484 3.115 -0.631 0.027*

c-MYC (Gene 4) 1.957 3.232 -1.275 0.000*

hTERT (Gene 5) 2.662 3.075 -0.414 0.128

P-values were obtained from the Student’s t–test based on the mean differences of
the expression levels. An asterisk indicates statistical significance of p < 0.05

ALT cell lines, 16 telomerase-positive cell lines and 4 nor-
mal (fibroblast) cell lines. Initially, the gene expression lev-
els of 29 genes (hTERT, CRY2, FOXM1, c-MYC, SOCS1,
AHNAK, HDAC5, TK1, S100A4, LMO4, PRKD1, PER2,
PRKCA, CEBPA, E2F1, RBPJ, TOMM20, AIP, EHD1,
TGOLN2, TTC17, LAMP2, ATP5D, ADGRL1, LASP1,
RPRD1A, HNRNPA3, KAT2A, STK24) were extracted
from the data according to [37]. However, only 5 sig-
nificant genes (CEBPA, E2F1, FOXM1, c-MYC, hTERT)
(connected to statistically significant edges) in either
telomerase-positive or ALT cells compared to the nor-
mal cells, discovered by APDA based on G-Networks [18],
have been included in this research. Note that the data
were first normalized to the 50th percentile to guaran-
tee the identical medians across all samples. Then they
were normalized again and scaled with mean 3 and vari-
ance 1 [18, 38]. Table 5 and Fig. 6 outline the data
in detail.

Modification of the aPDA
We adopt APDA introduced originally in [18], but slight
modification of assumptions on λ+

i and λ−
i is added in this

research as follows:

Fig. 6 A box plot displaying the five number summary of the five
significant genes in ALT cells. Red triangle dots represent the mRNA
expression levels of the corresponding gene in 4 normal cells

http://www.ncbi.nlm.nih.gov/geo/
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• Define initiating genes as genes which do not receive
any customer from other genes but send a customer
to others within the system.

• The arrival rate of negative customers from the
external system, denoted by λ−

i , of the initiating
genes is assumed to be 0. This assumption enables
the initiating genes to maintain their customers;
thereby to be consistently activated.

• The arrival rate of positive customers from the
external system is defined as follows:

λ+
i =

{
D in

i + 3 , if i ∈ {
Indices of non-initiating genes

}

x̄i
x̄i+1 × μi , if i ∈ {

Indices of initiating genes
}

where x̄i is the average mRNA expression level of the
gene i in normal cell lines. Here, D in

i represents the
in-degree of gene i, which is the number of edges
incoming to node i. The purpose of adding 3 to the
non-initiating genes is to prevent the numerator of qi
from becoming 0. The definition of λ+

i for the
initiating genes stems from the following logic: the
in-degree, arrival rate of the negative customers from
the external system and transition probabilities of an
initiating gene are all 0; that is,

D in
i = λ−

i = p+
ji = p−

ji = 0 for i ∈
{

Indices of initiating genes
}

.

In such cases, the parameters of stationary
distribution in Eq. 3 are qi = λ+

i
μi

, resulting in
λ+

i = qi × μi for all i ∈ {
Indices of initiating genes

}
.

Because the numerical value of qi is unknown yet, we
estimate it based on the property of the geometric
distribution with parameter (1 − qi) as follows:

x̄i = 1 − (1 − qi)

1 − qi
= qi

1 − qi

⇒ q̄i = x̄i
1 + x̄i

(16)

Equation 16 finally leads to the definition of λ+
i for

i ∈ {
Indices of initiating genes

}
. Note that, according

to Eq. 3, q̄i describes the estimate of the steady-state
probability that there is at least one mRNA of the
gene i [18].

Rules and assumptions of other parameters (shown in
Table 2) in this research are identical to those in [18].

Algorithm: simulation study
According to the global balance equation of G-Networks
[23–25], a movement of mRNA expression levels of a gene
in small time �t is decided by one of the 4 cases as shown
in Table 6.

Algorithm 1 contains the details of the simulation
assessing the estimated parameter values from the APDA.

Algorithm 1 Simulation assessing the estimated parame-
ter values from the APDA

1: Calculate the transition rates for each case. For Case
1 and Case 2, the dimension of the transition rate
matrix will be 1 × n, while it is n × n for the others. 1
represents an indicator function.

- Case 1 : α−
i =λ−

i + μi · di +
5∑

j=1

(
μi · p−

ij

)
· 1[xj=0]

- Case 2 : α+
i = λ+

i · 1[xi>0]

- Case 3 : α−+
ij = μi · p+

ij · 1[xj>0]

- Case 4 : α−−
ij = μi · p−

ij

2: Track the time to the next movement, T , which fol-
lows the exponential distribution [30]:

T ∼ Exponential (α) ,

where

α =
n∑

i=1

⎧
⎨

⎩
(
α−

i + α−
i
) +

n∑

j=1

(
α+−

ji + α++
ij

)
⎫
⎬

⎭ .

3: Obtain the transition probabilities for each case as
follows:

Case 1 : p
(

x+
i

)
= α−

i
α

Case 2 : p
(

x−
i

)
= α+

i
α

Case 3 : p
(

x+−
ij

)
=

α−+
ij
α

Case 4 : p
(

x++
ij

)
=

α−−
ij
α

4: Set the mean mRNA expression level of each gene as
initial points, x0 = {x̄1, x̄2, · · · , x̄N }.

5: Select one case from 4 total cases according to the
appropriate transition probabilities obtained in Step 3.

6: If either Case 1 or Case 2 is selected, then randomly
choose a number from {1, · · · , n}. If not, then choose
two numbers without replacement.

7: Update the mRNA expression levels according to the
case chosen.

- Case 1 : xi,1 = max(0 , xi,0 − 1)

- Case 2 : xi,1 = max(0 , xi,0 + 1)

- Case 3 : xi,1 = max(0 , xi,0 − 1) and
xj,1 = max(0 , xj,0 + 1)

- Case 4 : xi,1 = max(0 , xi,0 − 1) and
xj,1 = max(0 , xj,0 − 1)

8: Iterate Step 5. to Step 7. as many as needed. In this
research, 1000 times of movement were made, and
the iteration was set to 800 in order to obtain the
empirical distribution for each movement.
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Table 6 Possible movements of mRNA expression levels

Case 1 When Gene i loses one customer

x−
i = (x1, · · · , xi − 1, xn)

Case 2 When Gene i gains one customer

x+
i = (x1, · · · , xi + 1, xn)

Case 3 When Gene i loses one customer, while Gene j gains one

x−+
ij = (x1, · · · , xi − 1, xi+1, · · · , xj + 1, xj+1, · · · , xn)

Case4 When both Gene i and Gene j lose one customer

x−−
ij = (x1, · · · , xi − 1, xi+1, · · · , xj − 1, xj+1, · · · , xn)

Appendix: supplementary figures/tables

Table 7 Correlation coefficients at t = 0.2 for each type of cells
(normal, ALT, and telomerase-positive cells)

Time t = 0.2

Normal ALT Telomerase

Gene 1 and Gene 2 0.3321 0.3219 0.3414

Gene 1 and Gene 3 0.3258 0.3140 0.3317

Gene 1 and Gene 4 0.2190 0.2097 0.2046

Gene 1 and Gene 5 0.2905 0.2271 0.2234

Gene 2 and Gene 3 0.2943 0.3095 0.3055

Gene 2 and Gene 4 0.2028 0.2047 0.1951

Gene 2 and Gene 5 0.2398 0.2454 0.2260

Gene 3 and Gene 4 0.1995 0.2007 0.1936

Gene 3 and Gene 5 0.2254 0.2289 0.2188

Gene 4 and Gene 5 0.1583 0.1519 0.1396

Table 8 Mean mRNA expression levels (normalized and scaled)
of genes in normal and telomerase-active (Telom.) cells

Normal Telom. Mean diff. P-value

CEBPA (Gene 1) 4.643 2.589 2.054 0.003*

E2F1 (Gene 2) 3.428 2.893 0.535 0.190

FOXM1 (Gene 3) 2.918 3.020 -0.102 0.754

c-MYC (Gene 4) 1.842 3.290 -1.448 0.000*

hTERT (Gene 5) 1.874 3.282 -1.408 0.000*

P-values were obtained from the Student’s t–test based on the mean differences of
the expression levels. An asterisk indicates statistical significance of p < 0.05

Table 9 Parameters of stationary distribution, qi∈{1,2,···N} in Eq. 3,
of normal and malignant (either ALT or telomerase) cells

CEBPA E2F1 FOXM1 c-MYC hTERT

Normal (for ALT) 0.8253 0.7122 0.7130 0.6618 0.7269

ALT 0.7235 0.7571 0.7570 0.7637 0.7546

Normal (for telomerase) 0.8228 0.7741 0.7448 0.6481 0.6521

Telomerase 0.7478 0.7431 0.7513 0.7669 0.7429

Note that the APDA [18] differently estimates λ− (degradation) of normal cells
depending on the cell type to be compared
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Fig. 7 Trend of correlation between a pair of genes in the system over time in (top) normal cells and (bottom) in malignant cells from 16
telomerase-positive cell lines

Fig. 8 Trend of correlation between a pair of genes in the system over time in normal cells with the assumption that a pair of genes are initially
negatively correlated
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Fig. 9 ECDF plots of E2F1 under the normal condition (top) and ALT (malignant) condition (bottom). Orange and green straight and thick lines
represent theoretical (logarithmically transformed) CDF of normal and ALT conditions, respectively. Top: Orange, blue, purple, red (thick) lines serves
as the logarithmically transformed ECDF of E2F1 after 10 steps, 100 steps, 300 steps and 500 steps, respectively. Bottom: Orange, blue, purple, red
(thick) lines serves as the logarithmically transformed ECDF of E2F1 after 10 steps, 100 steps, 500 steps and 1000 steps, respectively
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