Warszawa, 3 czerwca 2019 r.

dr hab. inż. Mirosław Siergiejczyk, prof. uczelni
ul. Twarda 56A m.87
00-818 Warszawa

Recenzja rozprawy doktorskiej mgr inż. Wojciecha REDO
nt. „Wpływ pokładowego systemu rejestracji danych na bezpieczeństwo lotu statku powietrznego”

Promotor rozprawy: dr hab. inż. Jarosław Kozuba
Promotor pomocniczy: dr inż. Jana Warczek

1. Podstawa opracowania recenzji

2. Uwagi wstępne

W początkowej erze lotnictwa, jako środek transportu, tj. wczesne lata XX wieku do jego późnych lat sześćdziesiątych, nie utożsamiano towarzyszących rozwijaniu lotnictwa, występujących zjawisk stanowiących zagrożenie dla pilota lub statku powietrznego z jakimkolwiek sposobem zarządzania nimi lub całkowitym ich wyeliminowaniu. Główne działania w zakresie bezpieczeństwa ukierunkowane były początkowo na czynniki techniczne i minimalizację ich wpływu poprzez rozwój technologicznych urządzeń lotniczych. Pozwoliło to w efekcie na znaczną poprawę bezpieczeństwa w lotnictwie, a poprzez uwzględnienie dodatkowych elementów w postaci czynnika ludzkiego i organizacyjnego stanowiło początek
podejścia systemowego do zarządzania bezpieczeństwem w lotnictwie. Takie podejście do kwestii bezpieczeństwa w transporcie lotniczym oraz uwzględnienie krajowych i międzynarodowych wymagań, jak również czynników kulturowych pozwoliło na zdefiniowanie akceptowalnego poziomu bezpieczeństwa. Obecnie, system zarządzania bezpieczeństwem jest jednym z głównych systemów zarządzania w organizacjach lotniczych i podlega ciągłemu dośkonaleniu. Istotnym elementem systemu bezpieczeństwa jest system zarządzania danymi pochodzącymi z rejestratorów pokładowych, dostarczający dane do systemu zarządzania bezpieczeństwem. Dane te wykorzystywane są nie tylko w przypadku badania wypadków lotniczych, lecz również w celu oceny stanu technicznego układów i systemów statku powietrznego, w procesie szkolenia lotniczego i prognozowania uszkodzeń urządzeń pokładowych. Z tego względu dane systemu FDR muszą spełniać ustalone wymagania normatywne krajowe i międzynarodowe, oraz eksplotacyjne. Zasadniczym elementem pomiarowym parametrów lotu systemu FDR jest sensor pomiarowy. Wartość zmierzonego parametru oraz dokładność pomiaru uzależnione są m.in. od stanu technicznego sensora oraz jego wzorcowania. Zależność pomiędzy stanem technicznym sensora wynikającym z długotrwałej eksplotacji oraz grafikami wzorcowania sensorów, a wartościami mierzonymi parametrów lotu oraz ich wpływ na bezpieczeństwo statku powietrznego stanowiła problematykę badawczą pracy doktorskjej. Pomiar parametru lotu poprzez sensor wzorcowany metodą pomiaru charakterystyki rzeczywistej a nieinterpolowanej zwiększa wiarygodność danych oraz pozwala na ocenę stanu technicznego sensora potencjałowo czynnego. Należy przyznać, że praca doktorską przedstawiona do oceny w pełni wpisuje się w tak określony kierunek badań dając dodatkowe, komplementarne, narzędzie do diagnostyki i wzorcowania sensorów pomiarowych systemu FDR.

3. Przedmiot i zakres pracy

Recenzowana rozprawa doktorską została opracowana na Wydziale Transportu Politechniki Śląskiej i składa się z pięciu rozdziałów merytorycznych uzupełnionych o wykaz najważniejszych oznaczeń, wprowadzenie, podsumowanie i wnioski, bibliografię i załączniki, a zajmuje objętość 243 stron.

We wprowadzeniu, stanowiącym zarazem pierwszy rozdział merytoryczny, Autor odniósł się do przedstawienia roli, jaką odgrywa współczesne lotnictwo będące dynamicznie rozwijającą się dziedziną transportu, zarówno w aspekcie transportu cywilnego, jak też w zakresie obronności państwa. Wobec powyższego, Autor pracy słusznie zauważył,
że dynamicznie rozwijająca się nowoczesna technika lotnicza i tym samym zaawansowane technologicznie rozwiązania konstrukcyjne współcześnie eksploatowanych statków powietrznych, niejako zalogowły konstruktorów w zakresie rygorystycznych wymagań dotyczących najnowocześniejszych pokładowych systemów zapisu parametrów lotu i deszyfrcji.

Rozdział 1 został poświęcony problematyce dotyczącej systemowego podejścia do zarządzania danymi uzyskanymi z systemów pokładowych rejestracji parametrów lotu. Szczególna uwaga Autora została zwrócona zarówno na funkcjonalność działania systemów FDR (*Flight Data Recorder*), i kluczową ich rolę pełnioną w systemach zarządzania tymi danymi, jak też na obszary wykorzystania danych, będących wynikiem analizy parametrów lotu. Bazując na wybranych parametrach lotu w postaci prędkości przyrządowej V_p i wysokości barometrycznej H_p, zwrócono uwagę na możliwość występowania błędów pomiarowych w systemie rejestratora pokładowego, a tym samym podkreślono aspekt dokładności pomiaru tych parametrów. Dodatkowo przedstawiono układ struktury rozprawy zgodnie z przedmiotem badań recenzowanej pracy.

Podsumowując, Autor przedstawił w sposób ogólny koncepcję swojej pracy w aspekcie uzupełnienia zawartej metodologii przez wpisanie do niej badań w zakresie wpływu pokładowych systemów rejestracji danych na bezpieczeństwo współczesnych statków powietrznych, które są obiektem jego zainteresowań naukowych.

Rozdział 2 przedstawia problematykę dotyczącą wykorzystania danych otrzymanych z pokładowych systemów rejestracji FDR w aspekcie uwzględnienia bezpieczeństwa lotów w organizacji lotniczej zarówno z obszaru lotnictwa cywilnego, jak i wojskowego. W rozdziale tym Autor dokonał krytycznej analizy literatury przedmiotu badań, w szczególności obejmującej charakterystykę dokumentacji normatywnej zarówno na poziomie międzynarodowym, jak i krajowym oraz dokumentację eksploatacyjną wybranych statków powietrznych (M-28B „Bryza”, TC-II „Orlik” i TS-11 „Iskra”) oraz systemu FDR. W tym aspekcie uwypuklono m.in. rolę podsystemu obiektowej kontroli lotów (OKL), odgrywającego szczególne znaczenie w systemie bezpieczeństwa lotów lotnictwa państwowego i cywilnego, a także systemu eksploatacji statków powietrznych w zakresie procesu obsługiwanie i użytkowania. W oparciu o powyższe Autor przedstawił charakterystykę porównawczą w zakresie struktury funkcjonalności działania systemu OKL lotnictwa cywilnego i wojskowego.
W sposób prawidłowy przeprowadzono analizę porównawczą w aspekcie zarządzania danymi z systemu FDR, a w tym gromadzenia i wykorzystania danych, przy szczególnym uwzględnieniu ich wpływu na bezpieczeństwo lotów.

Rozdział 3 jest rozdziałem metodologicznym, w którym zawarto podstawowe założenia metodologiczne rozprawy, tj. tezę, przedmiot i cel badań oraz zakres pracy. Przedstawiono także problemy szczegółowe, metody i narzędzia oraz ogólny problem badawczy będące zarazem zadaniami badawczymi, których realizacja pozwoliła osiągnąć założony przez Autora cel badań. Do postawienia tezy pracy w zakresie przedmiotu badań oraz określenia celu pracy, przyczyniły się przede wszystkim dokonana analiza przeglądu literatury przedmiotu badań oraz doświadczenia Autora, zdobyte w zakresie eksploatacji pokładowych urządzeń rejestrujących oraz prowadzeniu analiz zapisów parametrów lotów. Ponadto, jak słusznie Autor zauważył, otrzymane dane z pokładowych systemów rejestracji parametrów FDR mogą charakteryzować się nieakceptowalnym poziomem dokładności, a tym samym mogą wywrzeć negatywny wpływ na stan bezpieczeństwa współczesnego statku powietrznego.

Autor w sposób prawidłowy określił cel badań i problemy badawcze, bazując na stwierdzeniu, że najważniejszym w aspekcie zapewnienia bezpieczeństwa oraz wiarygodności danych zapisywanych przez system FDR, uznał czynnik techniczny w zakresie stanu technicznego sensorów torów pomiarowych systemu FDR. Implikacją właściwego określenia celu pracy i problemów badawczych było postawienie hipotez, odnoszących się do poszczególnych problemów badawczych. Ze względu na to, że przedmiot badań sprowadzał się do funkcjonowania systemu rejestracji parametrów lotu w odniesieniu się do problematyki bezpieczeństwa lotu, Autor w kontekście opracowanych procedur i narzędzi badawczych, ograniczył się do analizy dwóch parametrów rejestrowanych przez pokładowe systemy FDR, co należy uznać za właściwe. Przyczyną takiego podejścia była bardzo duża ilość i różnorodność rejestrujących parametrów przez współczesne systemy FDR. Dla potrzeb ww. analizy, Autor posłużył się podstawowymi bazami archiwalnych zapisów z systemu FDR statków powietrznych zarówno lotnictwa państwowego w zakresie dokładności pomiaru oraz danymi lotnictwa cywilnego i państwowego w zakresie wykorzystania materiałów systemu OKL. Autor zastosował w swoich badaniach zarówno teoretyczne, jak i empiryczne metody badań, których wyniki stanowiły podstawę do osiągnięcia zasadniczego celu pracy i rozwiązania problemów badawczych określonych w tym rozdziale. Należy przy tym podkreślić, że wyniki badań teoretycznych, których podstawą była krytyczna analiza literatury przedmiotu, przyczyniły się do logicznego uporządkowania aktualnego stanu
wiedzy z zakresu budowy i zastosowania systemów FDR w lotnictwie. Wyniki te były także podstawą do doboru metod i technik badań empirycznych zastosowanych przez Autora w pracy.

Rozdział 4 dotyczy problematyki pokładowych urządzeń rejestrujących, m.in. w tym zakresie omówiono ich klasyfikację, stosowane metody oraz ewolucję systemu zapisu. Przedstawiono zarówno funkcjonalność działania modelu systemu pokładowego rejestratora danych, jak i cyfrowego systemu zapisu danych. Dodatkowo, uwypuklono kryteria pomiaru parametrów lotu systemu FDR, zwracając szczególną uwagę na wpływ sensora pomiarowego na dokładność pomiaru wielkości fizycznych, odpowiadających danym parametrom lotu. Na tej podstawie, dokonano identyfikacji obszarów systemu obiektywnej kontroli lotów, będących źródłem błędów tego systemu. W oparciu o powyższe, uwypuklono szczególną rolę sensora w torze pomiarowym oraz wymagane warunki w celu zachowania obiektywności oraz wiarygodności przeprowadzonego pomiaru. Implikacją tego, była zarówno prezentacja przykładowych uszkodzeń sensorów podczas procesu obsługowego statków powietrznych, jak też procedura skalowania sensorów w systemie FDR.

Należy przy tym uznać, że wyniki analiz przeprowadzonych w tym rozdziale w sposób prawidłowy zostały zakwalifikowane przez Autora, jako podstawa do realizacji dalszych badań empirycznych.

Rozdział 5 będący końcowym rozdziałem merytorycznym niniejszej rozprawy poświęcono badawczym aspektom opracowanej metody skalowania sensorów parametrów lotu w zakresie oceny ich stanu technicznego. Przedstawiono w nim także stanowisko badawcze AKP-bar do oceny stanu technicznego sensorów pomiarowych, skonstruowane przez Autora na potrzeby realizacji założonego celu badań.

Rozdział ten zawiera plan badań, sposób zbierania danych do analizy, informacje dotyczące obszaru badań oraz jakościową i ilościową analizę danych. W tym aspekcie dokonano charakterystyki koncepcji narzędzi badawczych, umożliwiających oszacowanie poprawności wykonania procesu skalowania sensorów parametrów lotu oraz weryfikację stanu technicznego sensorów potencjometrycznych. Badania zostały przeprowadzone dla dwóch wybranych torów pomiarowych rejestratora pokładowego (wysokość barometryczna Hb oraz prędkość przyrządowa Vp). Możliwość przeprowadzenia ww. badań była możliwa dzięki zastosowaniu zaprojektowanej i wykonanej przez Autora cyfrowej platformy pomiarowej – urządzenie AKP-bar, służącej do oceny poprawności wzorcowania sensora parametrów Hb i Vp, co jest dużym atutem niniejszej pracy. Istota dokonanych badań sprowadzała się przede wszystkim do pomiaru parametru w czasie rzeczywistym, weryfikacji

[Podpis]

5
i porównaniu go z wczytanymi do pamięci platformy wartościami parametrów wysokości barometrycznej H₈ oraz prędkości Vᵣ przyjętych za wzorcowe. Wyniki badań zrealizowanych w tym rozdziale pozwoliły Autorowi na osiągnięcie zasadniczego celu badań w aspekcie naukowym i praktycznym.

W **Podsumowaniu i wnioskach** Autor przedstawił końcowe podsumowanie wyników zrealizowanych prac badawczych. Podkreślił, że zastosowana metoda wzorcowania sensorów pozwala również na ocenę stanu technicznego sensora, w trakcie procesu wzorcowania. Ponadto wskazał on, że zwiększenie rozdzieleczności pomiaru umożliwia realizację badania w całym zakresie pracy sensora, w sposób ciągły. Rozwiązanie konstrukcyjne urządzenia badawczego AKP-bar pozwala na testowanie sensorów pomiarowych systemu FDR zarówno zdemontowanych, jak również zabudowanych na eksplotowanym statku powietrznym bez konieczności demontażu. Takie rozwiązanie daje możliwość szybkiej reakcji systemu zarządzania danymi pochodzącymi z FDR w postaci określenia zakresu działań naprawczych lub profilaktycznych w przypadku stwierdzenia nieprawidłowości w zapisie parametrów lotu w trakcie analizy. Zastosowanie urządzenia badawczego AKP-bar do oceny stanu technicznego sensorów pomiarowych zwiększa możliwości nadzorowanej eksploatacji systemu FDR, a tym samym statku powietrznego.

Należy przy tym podkreślić, że urządzenie to jest Autorskim rozwiązaniem doktoranta, a zastosowana metoda sprawdzenia sensorów potencjometrycznych zwiększa dokładność pomiaru parametrów lotu oraz wpływa na skrócenie czasu dostarczenia danych do systemu bezpieczeństwa lotów. Na uwagę zasługuje również możliwość poszerzenia aplikacji i rozbudowy interfejsu urządzenia badawczego dla innych torów pomiarowych systemu FDR.

Należy stwierdzić, że treść pracy jest zgodna z jej tytułem. Układ pracy jest czytelny i poprawny oraz spełnia standardy pracy doktorskiej. Podział pracy na rozdziały jest właściwy, a ich tytuły są jasno określone i tworzą logicznie uporządkowany materiał. Rozdziały wraz z podrozdziałami oddają jednoznacznie zawarte w nich treści. Bibliografia źródłowa stanowi 215 pozycji literaturowych bardzo precyzyjnie dobranych do wsparcia treści rozprawy i prowadzonych rozważań oraz jest właściwie zaprezentowana przez cytowanie w tekście.

3. Ocena rozprawy i uwagi

Doktorant umiejętnie zrealizował w pracy rozważania dla potrzeb udowodnienia tezy naukowej oraz osiągnięcia określonych aspektów w zakresie celu ogólnego i problemów badawczych. Do każdego z problemów szczegółowych postawiono hipotezy, które zostały
zweryfikowane w pracy. Przedstawioną do recenzji pracę dowiózł, że cele przedstawione na str. 83 - 84, zostały osiągnięte. W celu określenia wpływu pokładowego systemu rejestracji danych na system bezpieczeństwa lotu statku powietrznego, na początku pracy (rozdz. 2) przedstawił istotę systemu bezpieczeństwa na podstawie wymagań międzynarodowych i krajowych. Doktorant dokonał analizy baz danych zapisów parametrów lotów oraz wzorców sensorów potencjometrycznych pod kątem dokładności pomiaru wielkości fizycznych mierzonych w trakcie lotu statku powietrznego oraz występowania zaburzeń pomiaru. Do badań wybrane zostały dwa parametry lotu: prędkość przyrządowa \(V_p \) i wysokość barometryczna \(H_b \). Na podstawie otrzymanych wyników analiz stwierdził występowanie wartości znacznie przekraczających dopuszczalną wartość błędu pomiaru w odniesieniu do charakterystyki sensora. Stosowana obecnie metoda wzorcowania sensorów potencjometrycznych w systemie FDR polegająca na pomiarze wartości napięcia (lub rezystancji) tylko w określonych punktach zakresu, a następnie aproksymacji charakterystyki nie pozwala na wychylenie błędów pomiaru występujących pomiędzy punktami pomiarowymi. Stanowiło to podstawę do opracowania nowej metody skalowania sensorów potencjometrycznych, polegającą na płynnym (ciągłym) sprawdzeniu całego zakresu pomiarowego sensora z ustalony prędkością zmian mierzonego parametru fizycznego i częstotliwością próbkowania 10 Hz. Wkładem praktycznym dysertacji jest wykonane urządzenie badawcze oparte na w. metody. Doktorant przeprowadził serię badań sensorów torów pomiarowych prędkości przyrządowej i wysokości barometrycznej, potwierdzając skuteczność opracowanej metody. Na uwagę zasługuje to, iż jest to metoda umożliwiająca wykonanie zarówno wzorcowania, jak również ocenę stanu technicznego sensora, w sposób szybki, z możliwością sprawdzenia bez konieczności demontażu sensora ze statku powietrznego. Należy przy tym podkreślić, że urządzenie to jest Autorskim rozwiązaniem doktoranta. Zastosowana metoda sprawdzenia sensorów potencjometrycznych zwiększa dokładność pomiaru parametrów lotu oraz na skrócenie czasu dostarczenia danych do systemu bezpieczeństwa lotów. Na uwagę zasługuje również możliwość poszerzenia aplikacji i rozbudowy interfejsu urządzenia badawczego dla innych torów pomiarowych systemu FDR.

Stwierdzam, że treść pracy w pełni odzwierciedla jej tytuł. Rozprawa jest napisana według zasad obowiązujących przy redagowaniu prac doktorskich, a jej układ jest w zasadzie poprawny (Uwagi edycyjne). Podział pracy na rozdziały jest właściwy, a ich tytuły są jasno określone i tworzą logicznie uporządkowany materiał. Rozdziały wraz z podrozdziałami oddają jednoznacznie zawarte w nich treści. Bibliografia źródłowa stanowi 215 pozycji literaturowych bardzo precyzyjnie dobranych do wsparcia treści rozprawy i prowadzonych
rozważań oraz jest właściwe cytowanie w tekście. Jako uwagę do przedstawionej bibliografii źródłowej mogę wnieść to, że nie ma tam żadnej pozycji Autora, zarówno samodzielnej, jak też współautorskiej.

Zauważone drobne usterki edycji rozprawy, a w szczególności:

- W Wykazie najważniejszych oznaczeń nie zaprezentowano rozwinięcia skrótów i oznaczeń w języku polskim. Natomiast polskie rozwinięcia skrótów wzbogacano tłumaczeniem angielskim. Jest zrozumiałym, że w lotnictwie cywilnym językiem komunikacji jest język angielski, ale to jest dysertacja napisana w języku polskim i dla polskich czytelników.

- W tekście pracy brak numeracji rozdziałów głównych. Taka numeracja jest zawarta w spisie treści, a dalej w tekście już jest pominięta.

- Niezbyt fortunnie zredagowane są opisy rysunków i tabel np. Rys. 3 i bez kropki opis rysunków i tabel zaczynające się od dużej litery. Dużym utrudnieniem dla czytelnika jest też numerowanie ciągłe rysunków i tabel. Wydaje się, że w pracy, która obfituje w dużą ilustrację i tabel (to jest w pełni zasadne). Bardziej czytelnym sposobem numerowania byłoby poprzedzenie kolejnego rysunku w rozdziale numerem głównego rozdziału (np. 4.4.).

- W pracy Autor stosuje różne sposoby odsyłaczy do literatury w podpisach pod rysunkami. Raz są w nawiasach kwadratowych (to uważam z poprawy zapis), zaś w dalszej części pracy jako indeks górny.

- Brak objaśnienia na stronie 20 modelu 5M.

- W podrozdziale 2.5. Działanie organizacji lotniczej w przypadku wystąpienia przekroczeń parametrów lotu w zapisie z systemu FDR wszystkie tabele i rysunki powinny mieć podane źródła. Z tekstu nie wynika, że to są oryginalne osiągnięcia Autora.

- W podrozdziale 4.2. Ewolucja metod zapisu pokładowych systemów rejestracji poza rysunkiem Rys. 28 Spidobarograf K2-717, nie są podane źródła. A można
domniemywać, że nie są to zdjęcia urządzeń i wykresy zapisów oryginalnym dorobkiem Autora.

- Niezbędny czytelnie przedstawiony jest na str.105 Schemat ramki pomiarowej oraz dalej na str.106 Pojęcia podstawowe Bit, Bajt i Słowo – nie powinny być zamieszczone w naukowych dysertacjach.

- Edycja tabel zamieszczanych na dwóch kolejnych stronach budzi moje wątpliwości. Te tabele są mało czytelne (np. Tab. 12 Obecnie obowiązujące standardy odnośnie rejestratorów pokładowych, czy Tab. 13 Dane techniczne rejestratora…).

- W podrozdziale 4.3. Dokładność pomiaru parametrów lotu w systemie FDR można znaleźć szereg błędów i nieścisłości. We wzorze (3) nie jest wyjaśnione pod wzorem, co oznacza wartość X.

- Na stronie 124 „Próg czułości jest określony przez wartość średnicy drutu nawojowego (rys. 48)”. Raczej powinno być Próg czułości ΔU jest określony przez wartość średnicy drutu nawojowego ΔX (rys. 48).

- Na stronie 129 fragment „….można określić czułość [S] oraz stałą przetwarzania sensora [k], budzi wątpliwości w jakim celu Autor umieszcza w nawiasach kwadratowych symbole tych zmiennych?

- Czy we wzorze (4) $DU = U_{zas}/W$ jest tożsama z zapisem ΔU?

- Str. 155 Czy określenie „….statku powietrznego…” jest tożsama z kilka wierszy dalej przedstawionym określeniem „….statku latającego”. Z tym ostatnim określeniem nie spotkałem się w literaturze przedmiotu, poza historycznymi określeniami „maszyn latających”.

- Różne formy zapisu wysokości barometrycznej. Na stronie 85 Autor informuje”„wysokości barometrycznej H_B ”, zaś na str.196 przedstawił następujący zapis „…..przyjęto wartość wysokości barometrycznej równą $H_B = 0$.” W pracy naukowej raczej nie stosuje się różnych form zapisu tej samej wielkości.

- Na kilku rysunkach (wykresach) przedstawionych w pracy brak jest opisu osi (np. Rys. 63 Przykładowy grafik skalowań parametru: obroty oraz Rys. 93 Zaproponowana metoda skalowania sensorów). Czytelnik musi się domyślać, analizując tekst odnoszący się do tych rysunków, jakie wielkości są na osi X, a jakie na osi Y. Inne uwagi typu błędów edytorskich (np. str. 219 wyraz”.. pomaga..”) zostały przekazane bezpośrednio Autorowi. Tego typu uwagi oraz zauważone błędy i usterki edycyjne nie
umnieszają pozytywnej oceny dokonań Autora. W dalszych opracowaniach, a szczególnie przeszacowanych do publikacji w czasopismach naukowych należy je usunąć.

W tej części recenzji odniosę się do tych zagadnień, których w tekście pracy nie znalazłem. Przy czym zawarte poniżej uwagi często mają charakter wątpliwości i zarazem formułują pytania, na które chciałbym, żeby Doktorant w trakcie publicznej obrony udzielił odpowiedzi.

1. Proszę wymienić i uzasadnić zastosowanie takich, a nie innych metod i technik w zrealizowanych przez Pana procesach badań - teoretycznym i empirycznym.
2. Jak Autor widzi dalsze zastosowanie opracowanej przez siebie metody diagnostyki sensorów systemów FDR w eksploatacji statków powietrznych?
3. Czy przedstawiona metoda diagnostyki sensorów potencjometrycznych może być stosowana w odniesieniu do innych środków transportu?

4. Wnioski końcowe

Reasumując należy stwierdzić, że mgr inż. Wojciech Redo:

1. Dokonał analizy wpływu układu rejestratora pokładowego na bezpieczeństwo lotu statku powietrznego.
2. Przeprowadził analizę wymagań normatywnych dotyczących pokładowych systemów rejestracji oraz systemu zarządzania danymi pochodzącymi z rejestratora FDR.
3. W procesie analizy systemów zarządzania danymi z systemu FDR przedstawił algorytmy postępowania ze zdarzeniem lotniczym i rolę danych z systemu FDR w procesie badania zdarzenia.
4. Zrealizował postawione cele rozprawy i udowodnił tezę rozprawy.
5. Opracował metodę diagnostyczną, która pozwala na identyfikację potencjalnych niesprawności statku powietrznego w trakcie jego bieżącej eksploatacji oraz na etapie obsługi technicznej.
6. Opracował model matematyczny toru pomiarowego parametru systemu FDR (Flight Data Recorder), w którym zostały uwzględnione sygnały rzeczywiste (fizyczne) oraz sygnały zaburzające pochodzące od innej aparatury pokładowej statku powietrznego.
7. Zaprojektował i wykonał stanowisko badawcze umożliwiające przedstawienie zasady działania sensorów barometrycznych w zakresie przetwarzania wartości parametrów fizycznych na wartości kodowe oraz zapoznanie z procedurami wykonywania skalowania sensorów.

9. Badanie sensorów potencjometrycznych z wykorzystaniem stanowiska diagnostycznego AKP-bar znacznie skraca proces skalowania sensorów i umożliwia przeprowadzenie pomiaru sensora bez konieczności demontażu z systemu FDR statku powietrznego.

10. Wykazał się znajomością systemu zarządzania zdatnością do lotu statku powietrznego (SP) oraz systemu zarządzania bezpieczeństwem w lotnictwie SMS (Safety Management System).

Przechodząc do podsumowania można stwierdzić, że Doktorant w sposób jednoznaczny określił problem badawczy, potrafił samodzielnie sformułować zadanie naukowe i następnie je rozwiązał. Analizowany problem jest dość trudny teoretycznie, a poprawne jego rozwiązanie świadczy o dojrzałości badawczej Doktoranta. Przedstawiona rozprawa wykazuje, że Doktorant dysponuje wiedzą i dorobkiem naukowym o charakterze podstawowym w dyscyplinie Inżynieria lądowa i transport w zakresie systemów zarządzania bezpieczeństwem w lotnictwie.

Wyrażam opinię, że recenzowana rozprawa doktorska mgr. inż. Wojciecha Redo spełnia wymagania wynikające z Ustawy z dnia 14.03.2003 o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki (Dz. U. Nr 65, poz. 595, z późniejszymi zmianami). Biorąc powyższe pod uwagę stawiam wiosek o dopuszczeniu rozprawy do publicznej obrony.

[signature]