Recenzja

rozprawy doktorskiej Pana mgr inż. Aleksandra Mesjasza pt.:
"Zastosowanie statystycznych metod wspomagania decyzji dotyczących
oszacowania trwałości materiałowej rurociągów parowych"

1. Wstęp

Recenzowaną pracę Doktorant wykonał w ostatnich kilku latach w Katedrze Inżynierii Produkcji na Wydziale Inżynierii Materiałowej i Metalurgii Politechniki Śląskiej pod kierunkiem dr hab. inż. Jarosława Piątkowskiego (promotor pracy) oraz dr inż. Łukasza Malińskiego (promotor pomocniczy).

Rozprawa dotyczy opracowania autorskiej metody statystycznej do określenia bezawaryjnego czasu pracy elementów konstrukcji ciepłowo – mechanicznych w blokach energetycznych. Dla zapewnienia bezpiecznej pracy instalacji energetycznych i wymaganego poziomu produkcji energii elektrycznej konieczna jest odpowiednia diagnozyka oceniająca stopień degradacji struktury materiałów stosowanych na elementy ciśnieniowe. Utrzymanie prawidłowego poziomu eksploatacji tych materiałów jest bardzo istotne dla zapewnienia bezpiecznego użytkowania tych instalacji. Czas bezawaryjnej pracy, utożsamiany z trwałością użytkową materiału, wyznaczany jest między innymi na podstawie badań odporności na pełzanie. Badania te obarczone są wieloma niedogodnościami z powodu długotrwałego czasu ich trwania oraz wysokich kosztów wykonania. Dlatego też potrzebne jest wypracowanie takich metod obliczeniowych, które, na podstawie właściwości mechanicznych dla rzeczywistych warunków pracy, umożliwią szybkie oszacowanie bezawaryjnego czasu pracy.

W związku z powyższym stwierdzam, że temat rozprawy dobrany został właściwie, a prowadzone przez Doktoranta badania mogą z całą pewnością być przedmiotem pracy doktorskiej.

2. Charakterystyka rozprawy

Praca doktorska składa się z 9 rozdziałów, 159 stron maszynopisu, a w tym: wprowadzenie (str. 3 – 4), teoretyczne podstawy trwałości i niezawodności (str. 5 – 37), charakterystyka i warunki eksploatacyjne stali stosowanych na rurociąg (str. 38 – 51), podsumowanie części teoretycznej (str. 52 – 56), teza, cel i zakres pracy (str. 57 – 58), metodyka i obszar badań (59 – 69), wyniki badań własnych i ich omówienie (str. 70 – 134), podsumowanie wyników badań (135 – 142) oraz 11 wniosków (str. 143 – 144). Praca zawiera
164 pozycje literatury źródłowej (w tym 5 jako współautor) oraz 103 rysunki, 10 tabel i 2 załączniki.

3. Treść rozprawy

W części teoretycznej rozprawy doktorskiej Autor stwierdza, że podjęcie decyzji o dopuszczeniu do dalszej pracy materiałów o długim czasie eksploatacji, głównie rurociągów i ich elementów, oparte jest na podstawie pozytywnych wyników kompleksowych badań diagnostycznych i względów ekonomicznych, które decydują o częstotliwości przeglądów technicznych. Takie ekspertyzy określające zachowanie optymalnej dyspozycyjności stali energetycznych jest możliwe na skutek bieżącej i ciągłej obserwacji najważniejszych parametrów roboczych tych materiałów, takich jak:

- wyniki odpowiednio zaplanowanych badań właściwości wytrzymałościowych,
- obliczenia teoretycznego stopnia wyczerpania trwałości materiałowej,
- doświadczenia eksploatacyjne zespołów diagnostów,
- naprawy przywracające stan techniczny obiektu przynajmniej do kolejnego remontu.

Dalej Autor zauważa, że oprócz nielicznych wyjątków, brak jest systematycznych, zintegrowanych baz danych materiałowych o długim czasie eksploatacji urządzeń cieplno-mechanicznych, a zwłaszcza badań niszczących elementów wycofanych z eksploatacji. Powinno to być czynnością standardową, podobnie jak jest w Niemczech, Francji, Rosji czy Stanach Zjednoczonych.

Wobec powyższego, w pełni zasadne jest zebranie jak największej liczby wyników badań właściwości wytrzymałościowych elementów instalacji ciśnieniowych z różnych obiektów, a na tej podstawie zbudowanie kompleksowej bazy danych i wyznaczenie trendów zmian ich wartości w długim horyzoncie czasowym.

Następnie opisano zarówno klasyczne, jak i statystyczne metody oszacowania trwałości materiałowej i niezawodności eksploatacyjnej. Szczególną uwagę zwrócono na te, które są przydatne do liczbowego ujęcia opisu występujących niesprawności i w których występujące wielkości są łatwe do określenia. Autor omawia analizę regresji i korelacji oraz wariancji jedno- i wieloczynnikowej, a zwłaszcza metody aproksymacyjne, opierające się na szczególnych właściwościach tzw. „gaussowskiej przestrzeni standardowej”, do której transformuje się problem oceny niezawodności i trwałości materiałowej (np. łańcuchy Markowa).

Autor zauważa, że wyniki badań diagnostycznych wykonane przez certyfikowane laboratoria są w pełni wiarygodne, jednak ocena stanu technicznego materiału, a zwłaszcza prognoza dalszej bezpiecznej eksploatacji, jest subiektywną oceną specjalisty. Najczęściej ocena ta przeprowadzana jest na podstawie własnej wiedzy, doświadczeń oraz wyników i zaleceń z innych elektrowni. Często prace diagnostyczne – badawcze elementów krytycznych instalacji, pracujących w warunkach pełzania wysokotemperaturowego, wykonywane przez różne renomowane ośrodki naukowe były kwalifikowane według odmiennych kryteriów i
procedur. Zmieniło to dopiero wprowadzenie wytycznych UDT do „zasad diagnostyki i oceny trwałoci eksploatacyjnej elementów kotłów i rurociągów pracujących w warunkach pełnienia”, co spowodowało ujednolicenie wykonywanych badań w tym zakresie. Jednak dla instalacji pracujących znacznie powyżej 200 000 godzin, zakres i wyniki wykonywanych badań właściwości mechanicznych są nadal kwalifikowane według różnych procedur.

Część teoretyczną pracy kończy uwaga Autora, iż konieczne jest poszukiwanie nowych metod diagnostyki eksploatacyjnej, które wzbogacą i uzupełnią istniejący stan wiedzy odnośnie wpływu degradacji struktury na trwałość materiałową instalacji energetycznych. Niewątpliwie przyczyni się to do dokładniejszej prognozy szacowania ich bezawaryjnego czasu pracy, a to z kolei stanowiło przesłanki do sformułowania tezy, celu i zakresu pracy.

Celem naukowym pracy był dobór statystycznych modeli nieliniowych – linearzowanych, określających przebieg zmian pomiędzy wybranymi właściwościami wytrzymałościowymi, a czasem pracy elementów rurociągów, co pozwoliłoby na prognoistyczne wyznaczenie liczby godzin, po której należy zaprzestać dalszej eksploatacji.

Na podstawie przeprowadzonych obserwacji w ramach badań wstępnych oraz analizy literatury sformułowano następującą tezę pracy:

Ustalenie metodologicznych zależności statystycznych pomiędzy właściwościami wytrzymałościowymi, a bezawaryjnym czasem eksploatacji rurociągów parowych przy zastosowania komputerowych metod prognoistycznych i modeli matematycznych, ułatwia podjęcie strategicznych decyzji dotyczących długoterminowego zarządzania potencjałem produkcyjnym.

Zakres badań obejmował:

- Zebranie wyników badań diagnostycznych (właściwości mechanicznych rurociągów parowych) z różnych bloków energetycznych.
- Utworzenie bazy danych zawierającej wyniki: twardości (HV), wytrzymałości na rozciąganie (Rm), umownej granicy plastyczności (Rp), wydłużenia (A), przewężenia próbki po zerwaniu (Z) i udarności (KC) skorelowane z czasem eksploatacji i rodzajem medium (para święza i para wtórnie przegrzana) dla kolan rurociągów (łuk i prosta).
- Wybór modeli nieliniowych – linearzowanych, czyli tych, które po zastosowaniu przekształceń można sprowadzić do postaci liniowej i traktować jako modele liniowe.
- Ocena zdolności procesu przy zastosowaniu wskaźników zdolności. Porównanie prognozy wyników liczby godzin pracy z wartościami normatywnymi.

Na uwagę zasługuje ogrom pracy związany z rzetelnym zebraniem wyników badań, stanowiących podstawę do utworzenia statystycznej bazy danych. Wytyczne do przedłużenia czasu pracy urządzeń ciepłno – mechanicznych pracujących w warunkach krytycznych wynikają głównie z wytrzymałościowych prób na pełnienie. Jednak jak już wspomniano, próby te są obarczone wieloma niedogodnościami, dlatego prognozę bezawaryjnego czasu
pracy rurociągów parowych dokonano w oparciu o rezultaty badań twardości (HV), wyników ze statycznej próby rozciągania (Rm, Rp, A, Z) i badania udarowości.

Podkreślić należy, że wszystkie dane do badań statystycznych zaczerpnięto ze sprawozdań wykonanych przez certyfikowane laboratoria uznanej spółki diagnostycznej. Badania zostały wykonane w elektrowniach, w których rurociągi parowe eksploatowane są od ponad 25 lat (około 200 000 godzin pracy), a które przewidziane są do dalszej pracy.

Metodyka wykonanych obliczeń zakładała zebranie wyników dla poszczególnych właściwości wytrzymałościowych i analizę ich zmian w funkcji czasu. Do tego celu zastosowano statystyczne metody prognozowania w oparciu o matematyczne modele, które najlepiej odzwierciedlają dynamikę przebiegu zmian tych właściwości w czasie. Do obliczeń wykorzystano licencjonowane pakiety statystyczne: STATISTICA v.7.1 PL Statsoft i MedCalc Statistical Softwerer v.14.10.2.

Badania własne dotyczyły zebrania wyników twardości, wytrzymałości na rozciąganie, umownej granicy plastyczności, wydłużenia, przewężenia próbek po zerwaniu i badania udarowości dla następujących kryteriów zmiennych wejściowych:

1. Rodzaj medium, które płynie w rurociągu parowym:
 - para święża (stale w gatunkach: 14MoV6-3, 13CrMo4-5) – oznaczenie PS,
 - para wtórnie przegrzana (stal w gatunku 10CrMo9-10) – oznaczenie PWP.

2. Miejsce pobrania próbkó do badań właściwości mechanicznych w obszarze kolana:
 - „łuk” po stronie maksymalnej strefy gięcia,
 - „prostka” (rysunek 16b).

3. Lokalizacja sposobu wycięcia próbki do statycznej próby rozciągania:
 - wzdłużna – wzdłuż osi rurociągu parowego,
 - poprzeczna – w poprzek osi rurociągu.

Każdy rekord danych w bazie statystycznej zawierał następujące informacje:
 - rodzaj badań niszczących: Rm, Rp, A, Z, KC,
 - rodzaj badań nietkniętych: twardość HV,
 - rodzaj pary: para święza (PS) lub para wtórnie przegrzana (PWP),
 - miejsce pobrania próbki do badań: łuk lub prostka kolana rurociągu,
 - lokalizacja próbkó: wzdłużna lub poprzeczna.

Wyniki badań zmiany właściwości mechanicznych w czasie przedstawiono w postaci wykresów. Na podstawie położenia punktów empirycznych na wykresie, do dalszych badań wytypowano zmianę twardości, wytrzymałości na rozciąganie, umownej granicy plastyczności i wydłużenia.
Z przeanalizowanych modeli matematycznych do oszacowania prognozy całkowitego czasu pracy elementów kolan rurociągów parowych eksploatowanych w warunkach przemysłowych wybrano modele wykładniczy, hiperboliczny, kwadratowy i zmodyfikowany wykładniczy, które sprowadzono do postaci liniowej.

Na podstawie wyników wytrzymałości na rozciąganie stwierdzono, że prognozowany czas pracy rurociągu parowego wynosi od 215 000 do 228 000 godzin dla pary świeżej oraz od 193,5 do 258 000 godzin dla pary wtórnie przegrzanej. Po przekroczeniu tego zakresu, wytrzymałość na rozciąganie spada poniżej dopuszczalnej, normatywnej granicy tolerancji, która wynosi 440 MPa. Dalsza eksploatacja rurociągu parowego staje się więc niebezpieczna, co powinno zostać uwzględnione przez procedury specjalnego nadzoru diagnostycznego. Zastosowane modele matematyczne w dość zbliżony sposób określają prognozowany czas bezawaryjnej eksploatacji badanych kolan rurociągu parowego. Ze względu na wartość współczynnika determinacji R2 i poziom istotności uzyskanego w teście t-Studenta dla współczynników regresji modelem, który jest najbardziej dopasowany do punktów empirycznych zmiany wytrzymałości na rozciąganie w czasie, zarówno dla grupy stali PS i PWP, jest model wykładniczy.

W przypadku wyników umownej granicy plastyczności, dla grupy stali PS zakres szacowanego czasu eksploatacji rurociągu parowego wynosi od 225 000 do 247 000 godzin, natomiast dla grupy stali PWP od 251 000 do 293 000 godzin. Oszacowanie prognozy bezawaryjnej eksploatacji na podstawie zmiany wyników Rp w funkcji czasu najlepiej odzwierciedlają modele: wykładniczy oraz kwadratowy. Jednak z tych samych względów, co w przypadku zmiany Rm, modelami, które najlepiej opisują układ punktów empirycznych zmiany wartości Rp w funkcji czasu są modele wykładnicze.

Do oszacowania prognozy bezawaryjnego czasu pracy na podstawie zmiany wydłużenia w funkcji czasu najlepiej nadają się modele: kwadratowy oraz zmodyfikowana postać modelu wykładniczego, jednak najbardziej dopasowanymi są modele kwadratowe, zarówno dla grupy PS, jak i PWP.

Na podstawie wyników twardości HV dla grupy stali PS orientacyjny czas bezawaryjnej pracy rurociągów parowych wynosi od 192 000 do 221 000 godzin, a dla grupy PWP od 193 000 do 246 000 godzin. Autor zaznacza, iż nie jest bezpośrednio określona graniczna wartość dla twardości, natomiast jest ona wyznaczona jako miara porównawcza twardości HV i wytrzymałości na rozciąganie Rm.

Wartym podkreślenia jest, że Autor zaproponował opracowanie karty diagnostycznej jako narzędzia wspomagającego proces podejmowania decyzji dla służb specjalnego nadzoru diagnostycznego. Autor opracował ją na podstawie norm branżowych [126, 163], w której diagnoza musi wprowadzić dane eksploatacyjne: liczbę godzin pracy w analizowanym czasie, rodzaj medium oraz liczbę godzin pracy w podziale na określone przedziały temperatury. Na tej podstawie obliczany jest teoretyczny stopień wyczerpania dla każdego zakresu temperatury, a cząstkowe dane są sumowane. Wynikiem tych obliczeń jest
procentowy udział wyczerpania materiału rurociągu poddanego analizie. Takie podejście określenia stopnia uszkodzenia dla poszczególnych progów temperatury nie było do tej pory praktykowane. Może ono być alternatywnym narzędziem specjalnego nadzoru diagnostycznego, stosowanym dla prognozowania trwałości materiałowej i niezawodności eksploatacji rurociągów parowych.

W podsumowaniu Autor stwierdza, że przedstawiona metoda oceny trwałości materiałowej przy zastosowaniu statystycznych metod prognozy (70 modeli) może stanowić dopełnienie kompleksowego obrazu już stosowanych prób wytrzymałościowych i pełzaniowych.

4. Ocena merytoryczna

Podjęty temat uważam za ważny z teoretycznego i praktycznego punktu widzenia. Doktorant, stosując odpowiednie modele matematyczne i komputerowe metody prognoistyczne, ustalił zależności statystyczne pomiędzy właściwościami wytrzymałościowymi, a bezawaryjnym czasem eksploatacji rurociągów parowych. Statystyczne prognozowanie można traktować jako narzędzie wspomagające proces decyzyjny uzupełniający tradycyjne badania oceny degradacji struktury materiałów stosowanych na parociąg. Decyzje dotyczące prognozy bezawaryjnego czasu pracy są szczególnie ważne, nie tylko z powodu dotrzymania długookresowych planów produkcyjnych, ale przede wszystkim ze względów bezpieczeństwa pracowników. Dlatego też, każda metoda, która uzupełnia posiadają wiedzę, zwiększa trafność podejmowanych decyzji, co tym samym czyni warunki pracy bardziej bezpieczne. Z pełnym przekonaniem uważam, że Doktorant osiągnął cel pracy i wykazał postawioną tezę.

5. Ocena edytorska pracy

6. Błędy merytoryczne

6.1. Na stronie 11 podano przedział \([0,1]\), chociaż powinien to być przedział lewostronnie otwarty i prawostronnie domknięty \((0,1]\).

6.2. Wzory (5) i (6) nie są równoważne. Prawdopodobnie ten błąd nie jest zawniiony przez Autora, ale wynika z „materiału źródłowego”, z którego korzystał (strona internetowa).

6.3. Wzór (17) otrzymuje się ze wzoru (16), a nie z (14), str. 29.

6.4. Długość zaznaczonego przedziału na Rys. 12. wynosi nie 6\(\sigma\), a 12\(\sigma\).

6.5. Równość we wzorze (23) na str. 48 jest fałszywa.

6.6. Brak opisu parametru \(c\) we wzorze (29) na str. 62.
7. **Uwagi krytyczne i dyskusyjne**

8.1. Dlaczego do obliczeń użyto dwóch pakietów statystycznych?
8.2. Dlaczego na Rys. 30. (str. 74) i dalszych rysunkach przyjęto do analizy rozkład normalny, mimo że znacząco odbiega on od histogramu? Podobna uwaga dla Rys. 31., gdzie przyjęty „rozkład odbiegający od normalnego” również znacząco odbiega od histogramu.
8.3. Czy w Tab. 6. (str. 88) nie wartałoby uzupełnić średnie arytmetyczne i odchylenia standardowe o współczynnik zmienności?
8.4. W pracy przeprowadzono testy wybranych modeli statystycznych. Czy zostały wykonane również testy istotności dla współczynników regresji? Jeśli tak, to jakie?
8.5. Dlaczego wyniki badań właściwości mechanicznych pochodzą tylko z jednego laboratorium diagnostycznego?
8.6. Z przedstawionych danych wynika, że najdłuższy czas bezawaryjnej pracy wynosi niecałe 300 000 godzin. Czy w swojej karierze zawodowej miał Pan do czynienia z blokami pracującymi ponad 300 000 godzin i czy istnieją wytyczne odnośnie eksploatacji obiektów i instalacji energetycznych pracujących ponad ten czas?

8. **Ocena rozprawy**

W związku z powyższym bardzo wysoko oceniam rozprawę doktorską i to, co Autor w niej osiągnął.

9. **Wniosek końcowy**