Kracow, 7.08.2019

RECENZJA

pracy doktorskiej mgr inż. Moniki Olesiejuk

nt.:

„Badania nad syntezą i właściwościami nowych hybryd organicznych opartych o jednostki diayoldiazolowe i diaylotriazolowe w reakcjach krzyżowego sprzęgania”

Tworzenie wiązań między atomami węgla jest jednym z fundamentalnych zadań współczesnej syntezy organicznej. O ile jednak metodologia tworzenia wiązań między dwoma alifatycznymi atomami węgla oraz atomem alifatycznym i aromatycznym jest dobrze poznana zarówno od strony preparatywnej jak i mechanistycznej, to selektywne tworzenie wiązań chemicznych między sp2-atomami węgla układów aromatycznych nadal stanowi poważne wyzwanie dla nauki. Przedłożona mi do recenzji praca doktorska mgr inż. Moniki Olesiejuk, wykonana w Katedrze Technologii Organicznej i Petrochemii Politechniki Śląskiej pod kierunkiem Pani Profesor Agnieszki Kudelko wpisuje się w ten nurt naukowy.

Dysertacja zawiera się w objętości 175 stron i posiada układ typowy dla prac doktorskich: wprowadzenie, studium literaturowe, omówienie wyników badań własnych oraz zestawienie procedur eksperymentalnych. Dodatkowy aneks zawiera kompletnie reprodukcje ważniejszych widm zsyntezowanych połączeń.

Pracę otwiera 35-stronicowe studium literaturowe, oparte na 189 cytowanych źródłach. Na jego wstępie Doktorantka przywołuje podstawowe pojęcia z zakresu procesów sprzęgania krzyżowego, począwszy od ogólnej definicji, poprzez rys historyczny, po zestawienie konkretnych kierunków aplikacyjnych. Zestawienie to ma charakter systematycznej i krytycznej analizy, popartej bogatym arsenałem przykładów z dawniejszego i najnowszego piśmiennictwa. W podsumowaniu brakło mi jedynie
informacji, o możliwości realizacji procesów sprzęgania krzyżowego w sposób asymetryczny, w kierunku optycznie czystych połączeń. Badania w tym obszarze cieszą się w ostatnim czasie dużym zainteresowaniem świata nauki.

Dodatkowo, w studium literaturowym znaleźć można informacje nt strategii syntezy pierścieni 1,3,4-tiadiazolowych oraz 1,2,4-triazolowych. Znamiennym jest, że o ile powszechnie znane reakcje [3+2] cykloaddycji dają możliwość syntezy niemal każdego pięcioczłonowego układu heterocyklicznego, to analizowane struktury należą do bardzo nielicznych wyjątków od wspomnianej reguły. Szkoda, że w pracy zabrakło jednoznaczej choćby wzmianki na ten temat.

Objętość studium literaturowego oceniam jako zdecydowanie optymalną i nie „przegadaną”, jak to w ostatnim czasie w niektórych pracach doktorskich się zdarza. Studium wykonane jest bardzo starannie, zarówno na płaszczyźnie merytorycznej jak i edytorialnej. Nie mam wątpliwości, że Doktorantka szczegółowo przestudiowała wszystkie, wielowątkowe zagadnienia będące podstawą do prac eksperymentalnych i posiada doskonale rozumienie w tematyce badawczej.

między protonami. Razi mnie nieco również wtrącanie do naukowego języka doktorskiej Dysertacji żargonowych, stosowanych w praktyce laboratoryjnej sentencji w rodzaju „(...) pik pochodzący od węglik (...)” [str. 66]. W przywołanym przypadku mówimy nie o „węglach” (co można zrozumieć bardzo różnie) ale o atomach węgla, a precyzyjnie konkretnych jądrach 13C. Jednocześnie pragnę w tym miejscu podkreślić, że zgromadzone dane spektralne oraz wyniki analiz RTG nie pozostawiają wątpliwości, że zsyntezowane połączenia mają taką a nie inną strukturę.

Na uznanie zasługuje fakt, że biblioteka zsyntezowanych przez Doktorantkę i scharakteryzowanych strukturalnie połączeń liczy aż 82 związku(!). Niewątpliwie daje to podstawy, by wyniki wykonanych badań uznać za dające podstawy do wyciągania wniosków o charakterze ogólnym.

Dla biblioteki zsyntezowanych połączeń wykonane zostały ponadto badania ich właściwości emisyjnych. Związki 13,14,15,16h-m stanowią jak łatwo zauważyć homogeniczne serie, różniące się właściwościami EDG/EWG podstawników sprzężonych z pierścieniami fenyłowymi. W moim odczuciu, można było w tym miejscu pokusić się o poszukiwanie pomiędzy konkretnymi właściwościami emisyjnymi a stałymi podstawników (np. σ, σ^+, σ_1 etc.). Na pewno dałoby to podstawy do szukania dalej idących uogólnień.

Ostatnią część pracy stanowi zbiór zastosowanych procedur eksperymentalnych. Zestawienie to daje obraz ogrodu pracy eksperymentalnej wykonanej przez Doktorantkę. Wszystkie te procedury napisane są w sposób zapewniający pełną odtwarzalność wykonanych prac.

Na koniec, pragnę zwrócić uwagę na znaczący dorobek publikacyjny Doktorantki, na który składają się 10 publikacji w periodykach naukowych indeksowanych przez JCR oraz 14 ustnych i posterowych prezentacji na konferencjach zagranicznych i krajowych.

Reasumując, stwierdzam, że przedłożona mi do recenzji dysertacja doktorską mgr inż. Moniki Olesiejuk spełnia ustawowe warunki precyzyjące wymagania stawiane osobom obieguącym się na nadanie stopnia naukowego doktora. Mając powyższe na uwadze, wnioskuję o dopuszczenie Doktorantki do dalszych etapów przewodu doktorskiego. Ponadto, mając na uwadze wysoki poziom naukowy i jakość dysertacji oraz dorobek naukowy Doktorantki wnoszę o wyróżnienie pracy.

KIEROWNIK
Zakładu Chemii Organicznej (C-21)
Institucja C-2

dr hab. inż. Radomir Podsiadło, prof. PK