Recenzja

pracy doktorskiej mgr inż. Artura Goldy

pt. “Odporność betonu na oddziaływanie środowiska w konstrukcjach masywnych na przykładzie budowy bloków Nr 5 i 6 Elektrowni Opole”

opracowana zgodnie z uchwałą Rady Wydziału Budownictwa Politechniki Śląskiej z dnia 5 lipca 2017r.

1. Charakterystyka rozprawy

Rozprawa przedstawiona do recenzji zawiera 173 strony tekstu, w tym 147 rysunków i 53 tablice. Pracę podzielono na 7 rozdziałów, a na zakończenie podano wykaz cytowanej literatury i norm, obejmujący 153 pozycje. W pracy przemieszano numerację liczbami rzymskimi i arabskimi w sposób niezbyt logiczny – będę się ograniczał do powołań na rzymską numerację rozdziałów.

Tematyka rozprawy jest aktualna i powiązana z realizacjami szeregu obiektów przemysłowych, zwłaszcza energetycznych, w których stosowane są fundamenty w postaci wielkowymiarowych, masywnych konstrukcji żelbetowych.

Celem, jaki sobie postawił Doktorant było określenie możliwości doboru mieszanek betonu przeznaczonych do konstrukcji masywnych z uwzględnieniem wymagań trwałości w danym środowisku, a dodatkowo uzasadnienie takiego doboru przy możliwie ograniczonej zawartości cementu.

We wprowadzających krótkich rozdziałach I i II przedstawił Autor ogólne uwagi na rozważany temat i omówił zakres rozprawy, w tym badań własnych w ramach podjętej tematyki. Odniesieniem praktycznym tych rozważań i badań były konkretnie konstrukcje masywne płyty fundamentowych realizowanych dla obiektów maszynowni i kotłowni nowych bloków Nr 5 i 6 w Elektrowni Opole.

Rozdział III obejmuje studium literaturowe, z podziałem na dwa podrozdziały, zatytułowane „Specyfika betonów masywnych” i „Odporność betonu na oddziaływanie środowiska”.

W omówieniu specyfiki betonów masywnych przywołano wybrane informacje dotyczące niektórych zjawisk i właściwości twardniającego i stwardniałego betonu, koncentrując się na wpływie zmian temperatury. W nawiązaniu do tej tematyki omówiono wskazane w literaturze zasady doboru składników mieszanki betonowej i wpływ podstawowych składników, z
podkreślaniem problematyki istotnej w betonach masywnych i wskazaniem uwarunkowań technologicznych, związanych z układaniem betonu i jego pielęgnacją.

W drugiej części tego rozdziału przedstawiono informacje dotyczące odporności betonu na oddziaływania środowiska. Przytoczono tu ogólne zalecenia normowe i omówiono rodzaje zjawisk destrukcyjnych, takich jak karbonatyzacja, agresja siarczanowa, korozja chlorowa, reakcje alkalia-kruszywa, oraz cykliczne zmiany temperatury. Omówiono tu zarówno informacje dotyczące chemii i fizyki zjawisk zawarte w podstawowej literaturze przedmiotu, jak i w niektórych szczegółowych, przyczynkowych publikacjach zawierających wyniki badań.

W rozdziale IV przytoczono opisy doświadczeń, jakie zebrał Doktorant wcześniej, współpracując przy realizacji trzech płyt fundamentowych – nowego bloku w Elektrowni Łagisza w roku 2006, odlewni stali w Dąbrowie Górniczej w roku 2006 oraz fundamentu młyna cementu w Cementowni Górądzę w roku 2011. Składają się na to niektóre wytyczne zawarte w projektach technologii realizacji, informacje z publikacji na ten temat, obserwacje z placówek budow oraz wybrane wyniki badań laboratoryjnych i polowych, towarzyszących tym realizacjom. Najsięszej przytoczono i skomentowano skład mieszanez betonowych zastosowanych w tych obiektach, metody i warunki układania ciągłego dużych mas betonu oraz niektóre wyniki badań towarzyszących. Szczególną uwagę poświęcono wynikom pomiarów rozkładu temperatur w dojrzewającym betonie.

Rozdział V, najobszerniejszy w rozprawie (75 stron, czyli połowa objętości), przedstawia rozwiązania i oryginalne badania własne Doktoranta na temat różnych aspektów materiałowych i właściwości betonu zastosowanego w płytcach fundamentowych kołowni i maszynowni bloków Nr 5 i 6 Elektrowni Opole.

W pierwszej kolejności podano i poparto wynikami badań wybór składników mieszanek. Omówiono na początku dwa rodzaje cementów hutanowych, o normowych symbolach podstawowych CEM III/A 32,5N oraz CEM III/B 42,5L. Obydwa te rodzaje spełniały wymagania dla cementów o niskim ciepło hydratacji (LH), co ma istotne znaczenie przy mieszankach betonowych dla konstrukcji masywnych, a różniły się przede wszystkim zawartością mielonego granulowanego żużła wielkopiecowego. Drugim składnikiem badanym w celu zastosowań jako znaczący dodatek w mieszankach był popiół lotny krzemionkowy – zastosowano popiół pochodzący z Elektrowni Opole, cechujący się wysoką aktywnością. Kruszywa zastosowane w mieszankach, czyli piasek o frakcjach 0/2 mm oraz kruszywo o frakcjach 2/31,5 mm, były w zasadzie jednakowe w badanych mieszankach i spełniały wszystkie wymagania normowe, w tym m.in. pomijalną reaktywność alkaliczną. W wyborze domieszek chemicznych ograniczono się do trzech popularnych, kompatybilnych rodzajów jednego producenta – był to superplastyfikator na
bazie eteru polikarboksylowego, plastyfikator na bazie lignosulfonianu i domieszka opóźniająca, której składnikiem podstawowym była sacharoza.

Dalsze badania dotyczyły mieszanek betonowych i właściwości betonu stwardniałego, ukierunkowane na zastosowanie w czterech rozważanych płytach fundamentowych. Przedstawiono najpierw zakres i wyniki badań laboratoryjnych, poprzedzających badania towarzyszące realizacji. Poza podstawowymi badaniami mieszanek, dotyczącymi konsystencji i zawartości powietrza, badano także ciepło hydratacji spośa w różnych warunkach, przenikalność jonów chlorkowych i odporność na agresję siarczanową, czyli parametry rzadziej objęte badaniami typowymi mieszanek, natomiast istotne z punktu widzenia przewidzianych zastosowań. W odniesieniu do właściwości stwardniałego betonu ograniczono się do badania wytrzymałości na ściskanie, szczelności, czyli głębokości penetracji wody pod ciśnieniem i mrozoodporności. Nie badano właściwości mechanicznych stwardniałego betonu, takich jak np. wytrzymałość na rozciąganie, współczynnik sprężystości lub parametry skurczu i pełzania.

Badania laboratoryjne przeprowadzono konsekwentnie dla bardzo szerokiego zakresu składu mieszanek – po pieć mieszanek dla każdego z dwóch założonych na wstępie rodzajów cementu.

Ostatecznie, na podstawie badań laboratoryjnych i w dostosowaniu do warunków na budowie zastosowano dwie mieszanki, po jednej z każdym z założonych rodzajów cementu.

Dalsze badania własne i obserwacje, towarzyszące realizacji płyt fundamentowych w Elektrowni Opole, przedstawił Doktorant odrębnie dla płyt maszynowni bloków Nr 5 i 6 oraz dla płyt kotłowni tych bloków.

Płyty maszynowni były ogólnie mniejsze – każda miała objętość około 11.000 m³ betonu, miały wydłużony rzut w przybliżeniu w proporcji 2:1 i miały znacząco zmieniłą grubość. Doktorant przeprowadził przed realizacją analizę teoretyczną rozwoju temperatury i przedstawił środki zapewniające ograniczenie gradientu temperatury na wysokości płyt. W rzeczywistości warunki były inne niż zakładano, bo obywłe płyty betonowano w lutym, przy niskich temperaturach, a dodatkowo wystąpiły jeszcze pewne zróżnicowania mieszanek betonowych. Wystarczające okazało się zastosowanie ocieplenia z użyciem płyt styropianowych na górnict powierzchni.

Płyty fundamentowe kotłowni były większe w rzucie, bliskie kwadratu o bokach około 80 m i znacznej grubości od 3,0 do 3,8 metra. Objętość betonu w każdej z nich wynosiła około 18.500 m³. Stanowią zatem większy problem pod względem technologii układania betonu i zabezpieczenia przed skutkami wpływu ciepła hydratacji, zwłaszcza że betonowanie przypadło na kwiecień i lipiec. Analiza teoretyczna rozkładu temperatury opisana w rozprawie została przeprowadzona dla płyty kotłowni bloku Nr 6, na zasadzie symulacji różnych warunków zewnętrznych i izolacji termicznej powierzchni betonu. Biorąc pod uwagę wyniki pomiarów temperatur betonu w płytcie maszynowni bloku Nr 6
stwierdzono, że może wystąpić przekroczenie zakładanego gradientu temperatury, a więc wystąpienie ryzyka zarysowań termicznych i z tego powodu zastosowano mieszankę betonu o zmienionej recepturze. Charakteryzując tę zmianę w skrócie - zamiast mieszanek z cementem CEM III/A 32,5N zastosowano mieszankę z cementem CEM III/B 42,5L, cechującą się dalszym obniżeniem ciepła wydzielanego przy hydratacji cementu. Nie jest jasne z przedstawionych opisów, czy ta zmiana mieszanki dotyczyła tylko płyty kotłowni bloku Nr 6, czy także bloku Nr 5.

Analizę teoretyczną rozkładu temperatur poparto szeroką oceną badawczą wpływu wybranych składników na ciepło hydratacji, która w znacznym stopniu wykraczała poza główny temat pracy. Przywołano tu na wstępie wyniki zależności wpływu ciepła hydratacji na wytrzymałość normową dla znacznie szerszego zakresu rodzajów cementu, niż przyjęte wcześniej, a dalej, podano wyniki oznaczania ciepła hydratacji dla spoś cementowo-popiołowych za pomocą metody adiabatycznej i metody izotermicznej. W badaniu metodą adiabatyczną ograniczono się do mieszanin cementowo-popiołowych z dwoma wybranymi cementami hutniczymi, natomiast badania metodą izotermiczną rozszerzono aż na 16 składów kompozycji cementowo-popiołowych.

W dalszej części tego obszernego rozdziału przedstawiono sposób pomiaru i wyniki dotyczące zmian temperatury w betonie fundamentów kotłowni bloków Nr 5 i 6. Pomiarów dokonywano w 4 wybranych miejscach każdej płyty, na dwóch lub trzech poziomach. Dla płyty bloku Nr 6 (betonowanie w lipcu) dołączono wykres temperatury zewnętrznej, dla płyty bloku Nr 5, betonowanej w kwietniu nie zamieszczono takiego wykresu.

Wreszcie na koniec tego rozdziału podano wyniki badania właściwości betonu zabudowanego w rozważanych płytcach fundamentowych.

Wytrzymałość na ściskanie badano na próbkach pobranych przy betonowaniu i po stwardnieniu przechowywanych w wodzie – część w temperaturze stalej 20°C, a część w temperaturze zmiennej stosownie do wyników pomiarów temperatur w środowiskowym poziomie płyty. Temperatury dojrzewania betonu odwzorowane na podstawie pomiarów w betonie płyty były znacznie podwyższone i sięgały ok. 44°C i ok. 58°C. Dla betonów wykonanych wg obydwu receptur duże różnice wytrzymałości średnich z tych pomiarów występowały po 28 dniach, natomiast stopniowo zanikały w czasie i były niewielkie po 56 dniach, a pomijalne po 360 dniach. Nie potwierdzono tych obserwacji na próbkach pobranych z masywnej konstrukcji, co dałoby pełną weryfikację wpływu temperatury dojrzewania na przyrost wytrzymałości, a także dostarczyłoby informacji jakie różnice wykazuje beton w próbkach dojrzewających w wodzie i beton dojrzewający we wnętrzu masywnej konstrukcji.

Mrozoodporność zwykłą F100 badano po 28, 56 i 90 dniach dla dwóch stosowanych betonów – pewna korzystna przewaga wyników zarówno pod
względem utraty masy, jak i utraty wytrzymałości, zaznaczyła się przy mieszankach z cementem CEM III/B.

Głębokość penetracji wody pod ciśnieniem, czyli potocznie rozumiana szczerbina, stanowiącą istotną właściwość z punktu widzenia odporności na wpływy środowiskowe, zbadano na próbkach po 28, 56 i 90 dniach. Głębokość ta była znacznie mniejsza w betonie z mieszanką z zastosowaniem cementu CEM III/B, ale warto tu wspomnieć, że po 90 dniach obydwu betony spełniały przykładowe wymagania klasy ekspozycji XA3 przywołane dla porównania przez Autora z przepisów drogowych.

Wyzwano również badania gęstości karbonatyzacji, stosując procedurę według normy europejskiej i posługując się komorą pozwalającą na ekspozycję na działanie dwutlenku węgla. Wyniki badania po 28 i 90 dniach wskazały na znacznie niższą gęstość karbonatyzacji w betonie z zastosowaniem cementu CEM III/B.

Przedstawilem bardziej szczegółowo treść rozdziału V rozprawy, bo stanowi on zasadniczą wartość pracy, a układ treści nie zawsze jest tu logiczny, co w pewnym stopniu utrudnia zapoznanie się z osiągnięciami Autora.

Rozdział VI zawiera syntetyczne podsumowanie głównych analiz i badań, ale szerzej powtórzone tutaj wyniki i komentarze, dotyczące szybkości wydzielania ciepła hydratacji dla cementów hutniczych, w tym wpływ podwyższych temperatur oraz domieszczeń chemicznych. Podkreślono możliwość obniżonej ilości cementu w mieszankach w stosunku do zaleceń normowych, związanych z klasami ekspozycji.

Ostatni rozdział VII stanowi wnioski – zebrano je w 10 punktach. Dotyczą one, podobnie jak przewaga treści pracy, problematyki termicznej i jedynie pośrednio wzmacniają kwestie odporności na wpływy środowiskowe, jako elementy trwałości betonu.

Pracę zamyka zestaw literatury obejmujący 153 pozycje, w tej liczbie krajowe i zagraniczne podręczniki, artykuły i normy.

2. Ogólna ocena pracy

Jak wspomniano na wstępie tematyka rozprawy jest aktualna i Autor powiązał ją ze znanimi sobie realizacjami obiektów przemysłowych, zwłaszcza energetycznych, w których stosowane są masywne konstrukcje żelbetowe, o dużych rzutach, przewidziane do wyjątkowo dużych obciążeń. Warto tu podkreślić, że stosowane obecnie mieszanki betonowe, a zwłaszcza cementy różnią się pod wieloma względami od tych, które stosowano w konstrukcjach masywnych jeszcze kilka lat temu. To uzasadnia szerokie spektrum badań prowadzonych współcześnie w tym obszarze, a także stanowi o wartości ważnych dla praktyki wyników tej pracy.

Można ogólnie stwierdzić, że Autor zrealizował w znacznym zakresie podany na wstępie pracy cel, jakim było określenie i przebadanie możliwości
doboru mieszanek betonu przeznaczonych do konstrukcji masywnych, zwłaszcza uzasadnienie takiego doboru przy możliwie ograniczonej zawartości cementu, a także w szerokim zakresie wykonał badania ukierunkowane na możliwe spełnienie wymagań trwałości w danym środowisku.

Trzeba tu dodać, że nieco zbyt ogólnie sformułowano zakres rozważań, tak w odniesieniu do wymagań technologicznych, jak i pożądanej odporności na wpływy środowiskowe. Inne są bowiem wymagania dotyczące płyt fundamentowych, jakie wzięto za przykłady do rozważań, a inne na przykład w odniesieniu do zapór wodnych lub innych wyniesionych konstrukcji, trwale narażonych na zmienne wpływy środowiskowe.

W pracy nie wyartykułowano zestawu wpływów środowiska, a zatem wymagań trwałościowych, jakie mają miejsce przy rozważanych konstrukcjach masywnych fundamentów nowoczesnych bloków energetycznych, jakie w pracy zostały przyjęte jako obiekty przykładowe. W praktyce, taki zestaw wymagań jest podawany technologom betonu przez projektantów konstrukcji, na podstawie uzgodnień z różnymi branżami i stanowiskiem użytkownika.

Autor skoncentrował się przede wszystkim na problematyce termicznej betonów stosowanych obecnie w masywnych fundamentach i przebezał pod tym kątem dwie rodziny betonów o mieszanekach bazujących na dwóch rodzajach cementów hutniczych CEM III/A 32,5 i CEM III/B 42,5. Dla dwóch wybranych mieszanek z tymi cementami przeprowadził badania ich właściwości technologicznych, a następnie zbałać właściwości stwardniałego betonu z tych mieszanek, z ukierunkowaniem na podstawowe aspekty odporności na wpływy środowiska. W programie badań wykorzystał informacje zebrane w cytowanej literaturze i zastosował procedury zgodne z aktualnymi zaleceniamb normatywnymi, w tym z normami z ostatnich kilku lat.

Wyniki tych badań, podbudowane obszernym studium literaturowym i właściwie skomentowane, stanowią główną wartość pracy. Szereg wyników wykazuje poza zakresem aktualny w masywnych płytach fundamentowych, ale dostarczają istotnych informacji przydatnych także w innych typach konstrukcji i to nie tylko masywnych.

Obserwacje i wyniki badań w toku realizacji masywnych płyt fundamentowych z udziałem Autora pozwoliły na potwierdzenie spełnienia wymogów technologicznych na które zaprojektowano mieszanki, a także potwierdziły część wyników laboratoryjnych. Oczywiście nie mogły być na budowie potwierdzone właściwości trwałościowe, jako że dotyczą długotrwałych aspektów odporności betonu.

3. Uwagi krytyczne i dyskusyjne

(1) Niezbyt precyzyjny, choć obszerny jest tytuł pracy – „Odporność betonu na oddziaływanie środowiska w konstrukcjach masywnych na przykładzie budowy bloków Nr 5 i 6 w Elektrowni Opole”. Sugeruje to z jednej
strony, że praca dotyczy ogólnie wszelkich betonów, jakie stosowano lub stosuje się konstrukcjach masynowych, a z drugiej – że odporność betonu badano w blokadach Elektrowni Opole. Bardziej precyzyjnie można było ująć tematykę pracy w tytule „Odporność na wpływy środowisk betonów stosowanych w konstrukcjach masynowych fundamentów badanych pod kątem zastosowania nowych blokad Elektrowni Opole”. To od razu dalałoby informację, że chodzi o ograniczoną rodzinę betonów i że rozwiązania trwałościowe były związane z przygotowaniem konkretnych realizacji.

(2) Jeśli chodzi o program badań i zakres analiz, to przy ukierunkowaniu na aspekt prawdopodobnie budzi zastrzeżenie pełne pominięcie problemów zjawisk opóźnionych w stwardniałowym betonie, czyli skurczu i pełzania. Szczególnie pełne pominięcie kwestii skurczowych stanowi tu niedostatek wiadomości dla pierwszego użytkownika informacji, jakim jest projektant konstrukcji. Wprawdzie można oczekiwać, że skurcz betonu przy stosowaniu rozważanych mieszanek na cementach hutniczych będzie ogólnie mniejszy i będzie przebiegać wolniej, to jednak będzie to zawsze zjawisko zachodzące równolegle ze zmianami odkształceń wywołanymi zjawiskami termicznymi w okresie tworzenia betonu, także spowolnionymi. Jestem przekonany, że Autor spotkał się wielokrotnie z publikacjami dotyczącymi łącznie odkształceń termiczno-skurczowych, jako czynnika mogącego powodować rysy i tym samym istotnie wpływającego na trwałość betonu, czyli odporność betonu na wpływy środowiska. Z tym niedostatkiem pracy łączę się pominięte inne właściwości badanych betonów – takie jak wytrzymałość na rozciąganie i współczynnik sprężystości. W rozważanych w pracy masynowych płytach fundamentowych, bardzo silnie zbrojonych i poddanych olbrzymim obciążeniom skupionym (np. 150 MN czyli 15.000 ton), wyjątkowo duże znaczenie ma wytrzymałość betonu na rozciąganie, tak z uwagi na przyczepność zbrojenia, jak i zjawiska przebicia. W pewnym stopniu istotna jest także znajomość parametrów pełzania, albowiem zachodzące długotrwałe odkształceń betonu w warunkach bardzo dużych nierównomiernych obciążen mogą decydować o spełnieniu bardzo ostrych warunków dotyczących przemieszczeń maszyn i ciągów technologicznych spoczywających na masynowych fundamentach.

W masynowych fundamentach, z reguły połączonych sztywno z konstrukcją nadbudowy, która z racji wymaganej nośności ma także charakter bliski konstrukcji masynowej – znajomość tych właściwości betonu oraz ich zmian w czasie – jest niezbędna do zaawansowanego projektowania. Gdy zatem rozważamy betony o mieszkankach mniej typowych od uwzględnianych do niedawna w zależnościach normowych, w tym ubogich jeśli chodzi o cement, znajomość wspomnianych właściwości jest niezbędna do projektowania obiektów. Spełnienie specyfikowanej wytrzymałości na ściskanie stwardniałego betonu nie wystarcza do racjonalnego projektowania.
(3) Pewne wątpliwości budzi szeroko prezentowana w pracy kwestia wpływów termicznych w twardniejącym betonie. Przy opisie analizy temperatury twardeńia (punkt. 10.2.1) przytoczono opis podstaw analitycznych oraz wyniki w postaci wykresów i map naprężeń z obliczeń wykonanych za pomocą programu autorskiego TEMWIL, powołując się na niepublikowane opracowanie techniczne Pani Prof. Klemczak z roku 2015. Taka informacja jest dalece niewystarczająca, a przede wszystkim nie wiadomo, kto jest faktycznym autorem przedstawionej w tym punkcie treści. Więże się z tym niejasność czyjego autorstwa są rysunki 96-99, zatytułowane „Walidacja modelu analitycznego” – kto prowadził pomiary za pomocą sond pomiarowych i kto wykonał obliczenia numeryczne programem TEMWIL, porównywane z wynikami pomiarów. Brak także informacji o źródłach wyników pomiarów zmian temperatury przedstawionych na rysunkach 107 – 116. Pomiary prowadził zapewne zespół i jeśli był tu udział Autora, to powinien być wyartykułowany.

Rozszerzenie podsumowania w rozdziale VI o szczegółowe rozważania na temat szybkości wydzielania ciepła hydratacji, stanowi ponownie uzasadnienie wyboru cementów hutińskich dla mieszanek przydatnych w konstrukcjach masywnych i jest interesujące w poznawczego punktu widzenia, ale w istocie pozostaje poza głównym tematem pracy, dotyczącym odporności na wpływy środowiska.

(4) We wnioskach, podobnie jak w całej pracy, pominięto problematykę skurczu. Prowadzi to do jednostronnych stwierdzeń, np. że podstawowy problem w wykonawstwie konstrukcji masywnych dotyczy rozkładu temperatur. Pominięcie zjawisk skurczowych może wprowadzać tu w błąd. Większość powierzchniowych zarysowań obserwowanych w konstrukcjach ma bowiem pochodzenie skurczowe, często wynikające z niedostatecznej pielęgnacji.


Warto tu dodać, że w rozważanych przypadkach zastosowań mieszanek betonowych w konstrukcjach masywnych płyt fundamentowych kwestia klas ekspozycji jest mniej istotna niż np. obiekty trwale odsłoniętych ze różnych stron, np. zapór, nabrzeża, przyczółków, itp. Płyty fundamentowe są bowiem z
reguły zaizolowane od spodu i z boków oraz pokryte warstwami wykończenia od góry, a zatem powierzchni trwale eksponowanych albo nie ma, albo występują przez stosunkowo krótki czas.

Planując badania nowych rodzajów betonu nie wystarczy podać zalecenia normowe i wskazać możliwe odstępstwa, jak to ma tu miejsce w odniesieniu do minimalnej ilości cementu z uwagi na trwałość. Nie wystarcza także powołanie się na przyczynkowe prace o wąskim zakresie. Kwestia trwałości betonu w konstrukcja jest obecnie ujęta w szeregach poważnych publikacji i wytycznych międzynarodowych. Autor w podsumowaniu zamieścił wzmiankę o kierunku zmian w zaleceniach, polegających na koncepcji równoważnych właściwości betonu (ECPC), co wspomniano także w aktualnej wersji normy PN-EN 206:2014-04. Intensywne działania w tym kierunku prowadzone są przez zespoły ISO i FIB. Przywołam tu przykładowo tylko najszerzej rozpowszechnione źródła, a więc dokument ISO 16204 "Durability – Service Life Design of Concrete Structures" wydany w Genewie w 2012 roku, a także informacje w "fib-Model Code 2010 for Concrete Structures" w wersji dostępnej w polskim tłumaczeniu od roku 2014. Szkoła, że Autor nie odniósł się szerzej do tych dostępnych źródeł, a można było dotrzeć do jeszcze istotniejszego, świeższego dokumentu z tego zakresu przygotowanego przez Europejską Komisję Normalizacyjną CEN "Equivalent Durability Concept – EDC". Zwracam na to uwagę, bo często ogranicza się badaniach naukowych ustosunkowanie się tylko do norm, a trzeba pamiętać, że normy to – ujmując w uproszczeniu – spojrzenie wstecz, czyli uwzględniają wyniki i analizy z bliżej lub dalszej przeszłości.

(6) Zakres rozważanych przez Autora czynników dotyczących trwałości masywnych fundamentów jest pod pewnymi względami szerszy niż wpływy występujące w tych konstrukcjach, a niektóre aspekty zostały pominięte. We wspomnianych powyżej dokumentach międzynarodowych, przy aktualnie dostępnej podbudowie badawczej, rozważa się przy analizie stanów granicznych trwałości 7 czynników z tym związanych, a mianowicie:

1. – wpływ karbonatyzacji,
2. – wpływ działania chlorków,
3. – wpływ zamrażania/odmrażania,
4. – reakcje alkalia-krzemionka,
5. – agresję kwasową,
6. – agresję siarczanową,
7. – opóźnione formowanie ettringitu.

Autor rozważył i objął badaniami 5 z tych czynników, nie zajmując się dwoma – agresją kwasową i opóźnionym formowaniem ettringitu. Wydaje się, że o ile na przykład zamrażanie/odmrażanie rzadziej jest aktualne w głęboko posadowionych płytach fundamentowych, o tyle obydwa pominięte czynniki mogą być tu istotne.

Zwracam uwagę na braki w zestawieniu literatury, bo w dziedzinie technologii betonu, w której bardzo wiele dzieje się w ostatnich dekadach, taka informacja jest szczególnie istotna i pozwala na ocenę, czy mamy do czynienia z wiedzą historyczną, czy z udokumentowanymi aktualnymi wynikami lub zaleceniami. Przy tej okazji warto podnieść utrudnienie, jakie wnosi niealfabetyczny porządek obszernego wykazu literatury.

Pewnym niedotarczeniem jest brak podania źródeł przy niektórych cytowanych wynikach, wykresach lub rysunkach, np. w Rozdziale III. To w publikowanej pracy powinno dotyczyć także przypadków, gdy źródłem jest poradnik wydany przez macierzystą instytucję Autora, w której był jednym ze współautorów i być może był autorem tych ilustracji.

4. Podsumowanie recenzji

Podjęto w pracy temat w pełni aktualny, niełatwy i mający znaczenie zarówno poznawcze, jak i praktyczne. Stanowi to kolejne rozwinięcie prac prowadzonych od szeregu lat w zespole kierowanym przez Profesora Zbigniewa Giergicznego w Centrum Technologicznym Betotech.

Autor zrealizował w znacznym zakresie podany na wstępie pracy cel, jakim było określenie i przebadanie możliwości doboru mieszanek betonu przeznaczonych do konstrukcji masywnych, zwłaszcza uzasadnienie takiego doboru przy możliwie ograniczonej zawartości cementu, a także w szerokim zakresie wykonał badania wskazujące w jakim stopniu możliwe jest spełnienie wymagań odporności betonu w określonym środowisku.

Praca ma charakter technologiczno-badawczy, z wyraźnym ukierunkowaniem na praktyczne zastosowania. W takim przypadku występuje szereg kwestii dyskusyjnych, co do których można wносić szczegółowe wątpliwości i w recenzji je podniesiono, mając na celu zwrócenie uwagi Autora na problemy warte rozważenia w przyszłości. Usterki redakcyjne są nieliczne, a raczej wymaga podkreślenia dominująca jasność prezentacji, zdolność komentowania wyników obcych i własnych oraz dbałość o dobry poziom edytorzyk pracy, tak w zakresie tekstu, jak ilustracji.

Wyrażam przekonanie, że praca doktorska mgr inż. Artura Goldy zatytułowana „Odporność betonu na oddzialywanie środowiska w konstrukcjach masywnych na przykładzie budowy bloków Nr 5 i 6 Elektrowni Opole”, zawiera
elementy oryginalne, stanowiące rozwiązanie problemu naukowego, z wyraźnym ukierunkowaniem na aspekty aplikacyjne. Rozprawa wskazuje na opanowanie przez Doktoranta wiedzy teoretycznej i umiejętności samodzielnego prowadzenia badań w dziedzinie zaawansowanej technologii betonu, a zatem spełnia wymagania stawiane rozprawom doktorskim w Art.13, pkt. 1, Ustawy z dnia 14 marca 2003r. o stopniach naukowych i tytule naukowym oraz stopniach i tytule w zakresie sztuki (Dz. Ustaw Nr 65, poz. 595) z późniejszymi zmianami ogłoszonymi w latach 2005 do 2014.

Wnoszę o dopuszczenie do publicznej obrony.

[signature]