prof. dr hab. inż. Andrzeja Kasprzak
Katedra Systemów i Sieci Komputerowych
Wydział Elektroniki
Politechnika Wrocławska

Ocena osiągnięć naukowych

dr. inż. Adama Ziębińskiego
w związku z postępowaniem habilitacyjnym prowadzonym na
Wydziale Automatyki, Elektroniki i Informatyki Politechniki Śląskiej

Podstawowe informacje o Habilitancie

Ocena osiągnięcia naukowego stanowiącego podstawę do uzyskania stopnia doktora habilitowanego

Głównym osiągnięciem naukowym Habilitanta stanowiącym podstawę do ubiegania się o stopień naukowy doktora habilitowanego jest cykl powiązanych tematycznie trzynastu publikacji i dwóch patentów zatytułowany „Wybrane architektury i metody przeznaczone dla zwiększenia efektywności i wydajności systemów wbudowanych”. Są to następujące artykuły i patenty:

3. R. Cupek, L. Huczala, M. Nycz, A. Porębski, A. Ziębiński, Hybrid test bed for real-time communication systems, part 1, EDN, July 19, 2011,

4. R. Cupek, L. Huczala, M. Maria Nycz, A. Porębski, A. Ziębiński, Hybrid test bed for real-time communication systems, part 2, EDN, July 19, 2011

15. A. Ziębiński, R. Cupek, Patent wydany przez Urząd Patentowy Rzeczpospolitej Polskiej PL225022 z dn. 05.09.2016, Układ do podziału zadań realizowanych przez sterownik PLC pomiędzy jednostkę centralną PLC i specjalizowany koprocesor sterownika PLC zrealizowany na bazie układu reprogramowalnego.

W ramach osiągnięcia naukowego skupiono się nad zagadnieniami związanymi z opracowaniem architektury i metod przeznaczonych do zwiększenia wydajności i efektywności systemów wbudowanych, a w szczególności do oryginalnych osiągnięć Habilitanta zaliczam.

A. Opracowanie nowych modeli architektonicznych systemów wbudowanych, generowanych w języku opisu sprzętu w oparciu o kod programu. Zaproponowana architektura sprzętu opisana z użyciem języka HDL jest uniwersalna, można ją przenosić między różnymi układami reprogramowalnymi, a także zwiększa wydajność systemów wbudowanych, wymaga mniej zasobów sprzętów, zwiększa szybkość pracy rdzenia i zmniejsza zużycie energii. Tych zagadnień dotyczą prace [1, 6, 14, 15].
B. Opracowanie modeli architektonicznych systemów wbudowanych w języku opisu sprzętu wspomagających uruchomienie i testowanie systemów sterowania czasu rzeczywistego. W tym zakresie opracowano architekturę analizatora sieci Ethernet do testowania systemów komunikacyjnych czasu rzeczywistego oraz opracowano metody filtracji i usuwania ramek podczas transmisji między dwoma stacjami sieci. Te zagadnienia zostały zaprezentowane w pracach [3, 4].

C. Opracowanie modeli architektonicznych sprzętowych modułów kryptograficznych umożliwiających szyfrowanie danych algorytmami AES, DES3 i DES oraz umożliwiających podpisywanie danych algorytmem MD5. Wskazano na zalety proponowanych rozwiązań przede wszystkim w zakresie zwiększenia efektywności projektowania i wydajności systemów wbudowanych. Tej tematyce poświęcione są prace [5, 7].

D. Opracowanie metod i algorytmów sterowania platformami mobilnymi, a w szczególności opracowanie dwóch architektur platform mobilnych z kontrolerem Raspberry Pi, STM32/Arduino oraz wyposażonych w sensory i moduły ADAS. Przeprowadzono analizę możliwości opracowania systemów wbudowanych wykorzystujących fuzję danych w oparciu o pomiary z różnych systemów ADAS. Opracowano architekturę systemu wbudowanego i algorytmy omijania przeszkód z wykorzystaniem sensora ultradźwiękowego dla autonomicznej platformy mobilnej. Wyniki zawarto w pracach [9, 12].

E. Opracowanie modeli architektonicznych w zakresie implementacji pośredniczącej warstwy komunikacyjnej pozwalającej na wymianę danych pomiędzy istniejącymi systemami wbudowanymi a innymi systemami sieciowymi. W tym zakresie opracowano architekturę koprocessora realizującego założony zestaw usług serwera OPC UA, opracowano architekturę stanowiska testowego pozwalającego na transmisję po sieci Ethernet z systemami wyposażonymi w interfejs CAN oraz opracowano architekturę autonomicznej platformy mobilnej AMP wraz z metodą komunikacji z użyciem sieci Internet. Te problemy przedstawiono w pracach [2, 10, 11].

F. Opracowanie perspektyw rozwojowych zaproponowanych przez Habilitanta architektur i metod. Z tym zagadnieniem związana jest praca [13].

Pracę [8] wyłączylem z oceny zestawu publikacji składających się na osiągnięcie naukowe Habilitanta z powodu niejasności w oświadczeniach współautora tej pracy i Habilitanta co do wkładu własnego w jej powstanie. Współautor pracy [8] dr J. Flak w swoim oświadczeniu pisze: „współuczestniczyłem w opracowaniu architektury lokalnego węzła przetwarzania i sterowania dla systemu wbudowanego Virtex-5 FXT FPGA ML507 przedstawionego w podrozdziale 4.2 „Main unit” na rysunku 1 i opisanej w rozdziale 4 LPCN – Local Processing & Control”. Natomiast Habilitant w autoreferacie (rozdz. 4.6.4 str. 27) pisze: „Opracowałem architekturę lokalnego węzła przetwarzania i sterowania (LPCN – Local
Processing & Control Node) dla systemu wbudowanego Virtex-5 FXT FPGA ML507”. Dalej, w załączniku 4 str. 6 Habilitant pisze „Opracowałem architekturę lokalnego węzła przetwarzania i sterowania (LPCN) dla systemu wbudowanego Virtex-5 FXT FPGA ML507 przedstawionego w podrozdziale 4.2 „Main Unit” na rysunku 1. Współczesnimyłem również w opracowaniu architektury lokalnego węzła przetwarzania i sterowania opisanej w rozdziale 4 „LPCN – Local Processing & Control Node”.”. Zatem zasadne jest pytanie o wkład własny. Przyjmuję jednak, że w tym przypadku mogło wystąpić nieporozumienie – tym bardziej, że oświadczenia współautorów pozostałych prac i deklaracje Habilitanta w autoreferacie co do udziału własnego w tych pracach są jasno i precyzyjnie określone i nie mam co do nich żadnych zastrzeżeń. Jednak, aby rozważy wszelkie wątpliwości, Habilitant powinien na dalszym etapie postępowania habilitacyjnego wyjaśnić tę sprawę. Ponadto uważam, że praca [8] nie ma większego znaczenia dla całości osiągnięcia habilitacyjnego, tym bardziej, że Habilitant omawiając swoje najważniejsze osiągnięcia (koniec rozdziału 4.5.1 i rozdział 4.3.2 autoreferatu) ani słowem nie wspomniał o tej pracy. Natomiast wymienił tam wszystkie pozostałe prace składające się na osiągnięcie naukowe. Stąd moja ocena osiągnięcia naukowego dotyczy wyłącznie prac [1-7] i [8-15].

Osiągnięcie naukowe Habilitanta dotyczy opracowania modeli architektury systemów wbudowanych. W szczególności badania Habilitanta: dotyczą wybranych rozwiązań procesorów i specjalizowanych sterowników PLC, stanowią oryginalne rozwiązania komunikacyjne, kryptograficzne, monitorowania i testowania oraz przedstawiają algorytmy i metody stosowane w platformach mobilnych. Opracowane metody generowania struktury sprzętu, w języku opisu sprzętu w oparciu o kod programu skutkowały uzyskaniem dwóch patentów [14, 15] i przygotowaniu kilku wniosków patentowych. Świadczy to o ścisłym związku badań Habilitanta z zastosowaniami praktycznymi. Ten element związku badań z praktyką przewija się w pracach składających się na osiągnięcie naukowe. Habilitant swoje koncepcje sprawdził w toku badań eksperymentalnych i zwykle pokazywał, że jego metody są najwydajniejsze - między innymi wskazywał na poprawę szybkość działania i zmniejszenie zapotrzebowania na energię, co jest niezwykle istotne w przypadku rozwiązań mobilnych. Opracowanie architektury systemu wbudowanego umożliwiające omijanie przeszkód uważam za jeden z wartościowych wyników. Habilitant słusznie zainteresował się zagadnieniami bezpieczeństwa transmisji na styku system wbudowany - sieć Internet. Jego prace dotyczące szyfrowania i podpisywania algorytmem MD5 oceniam wysoko, z uwagi na to, że proponowane rozwiązania dają możliwość zabezpieczenia systemu przed niepowołanym dostępem. Na podkreślenie zasługuje fakt, że Jego prace w zakresie kryptograficznego zabezpieczenia systemów wbudowanych stały się podstawą do opracowania jednego wniosku patentowego. Ponadto widzę dalsze możliwości rozwojowe tych prac w powiązaniu z Internetem rzeczy, którego obecność w życiu społeczeństwa coraz bardziej staje się niezbędna.
Podsumowując tę część recenzji stwierdzam, że uprzednio wymienione oryginalne rezultaty osiągnięte przez Habilitanta zawarte w osiągnięciu naukowym (bez pracy [8]) reprezentują wysoki poziom merytoryczny i należy je traktować jako rezultaty nowe, których wcześniej brakowało w literaturze. Uważam recenzowane osiągnięcie naukowe (bez pracy [8]) za wartościowy i oryginalny wkład w rozwój problematyki systemów wbudowanych mający duże możliwości rozwojowe. Uznaję to osiągnięcie naukowe (bez pracy [8]) jako spełniające ustawowe wymagania stawiane rozprawom habilitacyjnym.

Ocena osiągnięć naukowo-badawczych Habilitanta

Poniższa ocena dotyczy działalności dra inż. Adama Ziębińskiego w okresie po uzyskaniu stopnia doktora nauk technicznych.

- Habilitant jest współautorem 8 publikacji w czasopismach znajdujących się w bazie JCR (wraz z pracą przyjętą do druku).
- Habilitant jest autorem jednego patentu i współautorem kolejnego patentu przyznanego przez Urząd Patentowy RP. Jest autorem jednego wniosku patentowego i współautorem kolejnych pięciu wniosków patentowych zgłoszonych do Urzędu Patentowego RP.
- Habilitant posiada 16 publikacji indeksowanych w bazie Web of Science. W bazie Scopus indeksowanych jest 26 Jego prac, a w bazie Google Scholar tych publikacji jest 58.
- Publikował swoje prace między innymi w seriach LNCS, LNAI oraz w materiałach cyklicznych konferencji wydawanych przez wydawnictwo Springer. Wiele Jego prac było wydanych przez Wydawnictwo Komunikacji i Łączności.
- Sumaryczny Impact Factor Jego prac wg listy JCR wynosi 7.967.
Liczba cytowań publikacji Habilitanta według bazy WoS to 50. W bazie Scopus jest to 85, a w bazie Google Scholar liczba cytowań wynosi 127.

Habilitant wygłosił 10 referatów na konferencjach międzynarodowych oraz 17 referatów na konferencjach krajowych.

Otrzymał 6 nagród Rektora Politechniki Śląskiej za osiągnięcia naukowe.

Dorobek naukowy dra inż. A. Ziębińskiego po uzyskaniu stopnia doktora (2002 r.) obejmuje łącznie 59 publikacji w części ulokowanych w rozpoznawalnych wydawnictwach. Dorobek ten jest skoncentrowany na szeroko pojętych zagadnieniach systemów mikroprocesorowych, ze szczególnym uwzględnieniem układów wbudowanych i ich zastosowań. Te właśnie zastosowania stały się dominujące w działalności badawczej Habilitanta. W znakomitej większości prac mają zaborzenie praktyczne, co jest szczególnie cenne i świadczy o wyraźnym nastawieniu Habilitanta na wykorzystania przemysłowe swoich idei i rozwiązań. To podkreśla wartość dorobku Habilitanta.

Analizując dokonania dra inż. Adama Ziębińskiego stwierdzam, że Jego osiągnięcia naukowe można uznać za wystarczające i spełniające ustawowe i zwyczajowe normy akademickie stawiane osobom ubiegającym się o stopień doktora habilitowanego.

Ocena dorobku dydaktycznego i popularyzatorskiego oraz współpracy międzynarodowej Habilitanta

Do najistotniejszych osiągnięć Habilitanta w tym zakresie zaliczam:

- Habilitant uczestniczył we współpracy Wydziału Automatyki, Elektroniki i Informatyki Politechniki Śląskiej z innymi ośrodkami krajowymi (między innymi AIUT Sp. Z o.o., Delphi Poland S.A.) oraz zagranicznymi (między innymi TH Ingolstadt, Bern University of Applied Sciences, Western Norway University of Applied Sciences). W ramach tej współpracy Habilitant uczestniczył w opracowaniu 11 wniosków o grant, a także uczestniczył w pracach badawczych realizowanych w ramach współpracy z tymi jednostkami badawczymi (konsorcjami).

- Brał udział w przygotowaniu międzynarodowej konferencji ICCCI 2017 jako przewodniczący i współorganizator sesji specjalnej *Cyber Phisical Systems in Automotive Area.*

- Odybył jeden staż w krajowej firmie (AIUT Sp. z o.o.) oraz staże w 3 zagranicznych ośrodkach (TH Ingolstadt, Bern University of Applied Sciences, Høgskulen i Sogn og Fjordane Norwegia). Przede wszystkim te staże były związane z realizacją projektów badawczych.
- Jest recenzentem artykułów do czasopism krajowych takich jak *Przegląd Elektrotechniczny* i *Studia Informatyka* oraz jest recenzentem prac zgłoszonych do 9 konferencji międzynarodowych.
- Prowadził następujące przedmioty na Politechnice Śląskiej: *Budowa komputerów*, *Języki opisu sprzętu*, *Karty inteligentne*, *Komputerowe wspomaganie projektowania układów elektronicznych*, *Budowa komputerów i urządzeń zewnętrznych*, *Bezpieczeństwo systemów komputerowych*, *The Programmable Devices*, *Konstrukcja i oprogramowanie systemów wbudowanych* oraz *Archiwatura systemów komputerowych*.
- Prowadził ponad 50 prac magisterskich i inżynierskich.
- Opiekun koła naukowego Industrum.
- Habilitant jest współautorem dwóch podręczników akademickich z zakresu bezpieczeństwa systemów komputerowych oraz komputerowego wspomagania projektowania systemów mikroelektronicznych.
- Opiekun naukowy 4 doktorantów. Efektem tej opieki był współudział w opracowaniu 22 artykułów i 3 wniosków patentowych.
- Otrzymał 2 nagrody Rektora za osiągnięcia organizacyjne.

Podsumowując tę część recenzji stwierdzam, że Habilitant wykazuje aktywność w zakresie współpracy międzynarodowej i jest rozpoznawalny w obszarze wiedzy, którą reprezentuje. Działalność dydaktyczną również oceniam jako wystarczającą.

Wniosek końcowy

Biorąc pod uwagę wyniki zawarte w osiągnięciu naukowym (bez pracy [8]) stanowiące znaczący i wartościowy wkład w rozwój dyscypliny naukowej informatyka i mające istotny walor praktyczny oraz znaczący dorobek naukowy dra inż. Adama Ziębińskiego stwierdzam, że zostały spełnione wymagania określone w Ustawie o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki z dnia 14.03.2003 (Dz. U. 2003 nr 65 poz. 595 z późniejszymi zmianami) oraz zwyczajowe wymagania akademickie odnośnie osób ubiegających się o stopień doktora habilitowanego. To pozwala mi z pełnym przekonaniem wnosić do Rady Wydziału Automatyki, Elektroniki i Informatyki Politechniki Śląskiej o nadanie drowi Adamowi Ziębińskiemu stopnia doktora habilitowanego w dziedzinie nauk technicznych w dyscyplinie informatyka.