CONTENTS

1. GENERAL INTRODUCTION ... 7

2. POROUS MATERIALS .. 10
 2.1. Introduction .. 10
 2.2. Boundary integral equation for linear elasticity 12
 2.3. Fast multipole boundary element method 13
 2.4. Numerical examples ... 18
 2.4.1. Solid body with single cavity .. 18
 2.4.2. Solid body with two cavities .. 21
 2.4.3. Materials with uniformly distributed cavities 25
 2.4.4. Materials with randomly distributed cavities 28

3. MATERIALS WITH CRACKS AND RIGID FIBRES 35
 3.1. Introduction .. 35
 3.2. Boundary integral equations for a plate with cracks 38
 3.3. Numerical implementation of the method for cracks 39
 3.4. Contact of crack surfaces ... 39
 3.5. Boundary integral equations for a plate with rigid fibres 41
 3.6. Numerical implementation of the method for fibres 42
 3.7. Numerical examples ... 44
 3.7.1. Sintered materials with branched cracks 44
 3.7.2. Materials with cracks subjected to compression 53
 3.7.3. Composites with rigid fibres .. 59

4. MAGNETO-ELECTRO-ELASTIC MATERIALS 62
 4.1. Introduction .. 62
 4.2. Model of magneto-electro-elastic materials 63
 4.3. Dual number algebra .. 70
 4.4. Numerical examples ... 72
 4.4.1. Local sensitivity analysis of effective properties of magneto-
 electro-elastic composite ... 72
4.4.2. Spatial derivatives of 3D Green’s function in magnetoelectroelasticity .. 76
4.4.3. Sensitivity analysis for optimal design of magnetoelectric composite ... 82

5. OPTIMAL DESIGN OF MATERIALS .. 89
5.1. Introduction .. 89
5.2. Artificial immune systems ... 90
5.3. Numerical examples .. 95
 5.3.1. Identification of porous structure parameters .. 95
 5.3.2. Optimization of porous structure effective elastic properties ... 100
 5.3.3. Optimization of composites with rigid fibres ... 106
 5.3.4. Optimization of magnetoelectric composites .. 109
 5.3.5. Identification of distribution of materials in microstructure ... 112

6. GENERAL SUMMARY .. 121

BIBLIOGRAPHY .. 124

ABSTRACT .. 131