Recenzja rozprawy doktorskiej

opracowana na zlecenie dziekana Wydziału Automatyki, Elektroniki i Informatyki
Politechniki Śląskiej w Gliwicach

prof. dr hab. inż. Andrzej Materka
Politechnika Łódzka
Instytut Elektroniki

Łódź, 21 sierpnia 2017 r.

Tytuł rozprawy: Zastosowanie dynamicznego nieliniowego wyrównywania w przetwarzaniu sygnałów biomedycznych

Autor rozprawy: mgr inż. Tomasz Moroń
Promotor rozprawy: dr hab. inż. Marian Kotas
Dziedzina: nauki techniczne
Dyscyplina: elektronika

Przedmiotem pracy jest poszukiwanie skutecznych metod tłumienia składowej zakłóceń w niestacjonarnych sygnałach cyklicznych o nieliniowo zdeformowanej osi czasu poszczególnych cykli. Przykładami tego rodzaju sygnałów są odpowiedzi wywołane mózgu i elektrokardiogramy. Zaimplementowanie poszukiwanych metod w elektronicznych systemach pomiarowych prowadzi do uodpornienia wyników pomiaru cech sygnału (np. różnic czasu między jego składowymi elementami) na zakłócenia i deformacje. Diagnoza medyczna podejmowana na podstawie takich cech staje się dokładniejsza i bardziej precyzyjna. Celem ocenianej pracy, jasno określonym na str. 10, jest udoskonalenie metody [24] koherentnego uśredniania nieliniowo dopasowanych do siebie cykli sygnału oraz przystosowanie jej do przetwarzania wybranych sygnałów biomedycznych. Praca ma charakter teoretyczno-doświadczalny i obejmuje krytyczny przegląd stanu wiedzy, sformułowanie hipotez dotyczących możliwości udoskonalenia istniejących metod przetwarzania, opracowanie stosownych algorytmów i programów komputerowych, zaplanowanie i przeprowadzenie eksperymentów numerycznych, analizę i dyskusję wyników. Treść rozprawy podzielono na 8 rozdziałów, logicznie odpowiadających kolejnym etapom przeprowadzonych badań, wykaz literatury oraz spisy rysunków i tabel.

Tezę rozprawy przedstawiono na str. 18. Jest ona oryginalna i ukierunkowana na rozwiązanie istotnego problemu – naukowego, o dużym potencjalnym znaczeniu praktycznym. Słuszność hipotezy potwierdzono eksperymentalnie, posługując się zaplanowanym w sposób przemyślany doświadczeniem i analizą wyników komputerowego przetwarzania odpowiednio dużej liczby sygnałów, symulowanych oraz rzeczywistych. Przeprowadzony dowód jest kompletny i obejmuje nie tylko liczbowe ujęcie stopnia tłumienia zakłóceń sygnału, ale też wpływ przetwarzania sygnałów za pomocą metod opracowanych i metod odniesienia na dokładność pomiaru parametrów diagnostycznych.

Wprowadzenie do tematyki rozprawy oraz analiza stanu wiedzy są przeprowadzone na podstawie literatury, głównie najnowszych publikacji anglojęzycznych z ostatnich dziesięcioleci. Całkowita liczba cytowanych źródeł wynosi 91 (a w istocie 90 gdyż odnośniki [58] oraz [60] wskazują omyłkowo ten sam...

Radosław Zatek
artykuł). Doktorant ze swobodą korzysta z informacji w nich zawartych. W odróżnieniu od większości autorów współcześnie redagowanych prac, mgr Moroń nie cytuje źródeł internetowych. Dojrzałe analizuje prace historyczne, podstawowe dla danego zagadnienia, np. artykuły z lat sześćdziesiątych czy osiemdziesiątych ubiegłego wieku. Przegląd literatury jest krytyczny i wnioskowy, zarówno w zakresie podstaw teoretycznych jak i efektów przetwarzania sygnałów znanymi metodami. Dobór źródeł oraz przeprowadzona przez Doktoranta dyskusja ich zawartości świadczą o tym, że posiada on wiedzę niezbędną do prowadzenia badań naukowych mieszczących się w zakresie dyscypliny elektronika, a także dyscyplin pokrewnych, którymi są w tym przypadku informatyka oraz biocybernetyka i inżynieria biomedyczna.

Podjęty w ocenianej rozprawie problem naukowy należy do grupy zagadnień o kluczowym znaczeniu dla rozwoju elektronicznej aparatury medycznej. Poszukiwanie sposobów uodpornienia pomiaru parametrów sygnału na zakłócenia i deformacje osi czasu jest przedmiotem badań naukowych prowadzonych za granicą (np. [24], [58]) oraz w Polsce (np. [41]), także z udziałem doktora [40]. Doktorant wniósł istotny wkład do badań w tym zakresie. Częściowe wyniki swoich prac opublikował w znawcom periodyku naukowym Biocybernetics and Biomedical Engineering (Elsevier, IF = 0.808) oraz w trzech artykułach pokonferencyjnych w Man-Machine Interaction 4, Information Technologies in Medicine Wydawnictwa Springer. Jego prace były zatem oceniane i zostały przyjęte przez innych badaczy.

Str. 9, 35 i inne Sugeruję rozwiązanie różnic znaczenia słów „pozycja” i „położenie” w odniesieniu do punktów i innych obiektów modelowanych jako figury geometryczne. „Pozycja” jest słowem bogatszym znaczeniowo od słowa „położenie”. Na informację o pozycji składa się położenie (np. umownego środka ciężkości) oraz orientacja względem wybranego wektora (np. wydłużonych figur płaskich względem osi układu współrzędnych). Nie można określić pozycji okręgu ani punktu na płaszczyźnie, można tylko podać położenie tych obiektów. Domysłam się, że w ostatnim akapicie na str. 9 chodzi o położenie załamków sygnału na osi czasu, a nie o ich pozycję.

Str. 10 pasmowo-przepustowy → pasmowo-przepustowy (także na str. 82, 86, 92) Zwrót „tłumienie zakłóceń metod” sugeruje (zapewne niezgodnie z intencją autora), że metody mogą być zakłócone.

Str. 12 o możliwej róże długości → o różnej długości

Str. 13 Warunek monotoniczności (3) obejmuje niedopuszczalną sytuację, w której jednocześnie \(i_{x+2} = i_x \) oraz \(j_{x+2} = j_x \). W [74] przypadek ten jest wykluczony w tzw. warunku wielkości kroku.

str. 2
Str. 14
Wydaje się, że sekwencja par indeksów \((i,j)\) w podpisie rys. 2.1 nie odpowiada definicji sygnałów \(x_o(j)\) oraz \(x_o(i)\) w częściach A i D tego rysunku. Podanie wartości \(N_o\) i \(N_b\) dla ilustrowanego przypadku pomógłoby w identyfikacji dopasowywanych sygnałów.

Str. 19
wypadku → przypadku

Str. 22
uzasadnionym wydaje się → uzasadnione wydaje się

Str. 26
Jaką wartość przypisano parametrowi \(b\) w (5.2)? Czy czarna linia na rys. 3.2 B-D odwzorowuje zależność (5.2)?

Str. 27 i 28
W dyskusji wyników zilustrowanych na rys. 3.6 pojawia się zasygnalizowane w rozdziale 3.1 odniesienie do korelacji miedzy składowymi zakłóceń występującymi w dopasowywanych do siebie sygnałach. Stwierdzenia te nie są jednak poparte porównaniem ilościowych miar korelacji. część a → część A (2 razy)

Str. 38
pozycjach czasowych → chwilach czasu

Str. 52
W jaki sposób spararmetryzowano różnice między poszczególnymi realizacjami symulowanych sygnałów zapisanych w bazie danych, zilustrowanymi przykładowo na rys. 5.1? Jaki był przedział zmienności parametrów?

Str. 58
niemożliwym okazało się zastosowanie → niemożliwe okazało się zastosowanie

Str. 61
miła → miała

Str. 68
nie najlepszej → nienajlepszej

Str. 71
Największe wartości współczynnika tłumienia zakłóceń przedstawione w tab. 6.1 występują dla skrajnej wartości \(\tau_m = 400\) ms. Z czego wynikało ograniczenie \(\tau_m\) do 400 ms? Jaka jest dokładnie sygnalizowana w podpisie tej tabeli relacja między \(\tau_m\) a symbolami składającymi się na równanie (3.3)? niższej skuteczności → mniejszej skuteczności

Str. 81
dwunasto-kanalowych → dwunastokanałowych

str. 3
Magister Tomasz Moroń opracował oryginalne rozwiązanie istotnego problemu naukowego w dziedzinie nauk technicznych. Kandydat posiada wiedzę teoretyczną i praktyczną potrzebną do prowadzenia badań naukowych w dyscyplinie elektronika. Stosując metody badawcze właściwe dla tej dyscypliny udowodnił, że technikę redukcji zakłóceń niestacjonarnych sygnałów cyklicznych drogą uśredniania nieliniowo wyrównanych cykli można znacznie udoskonalić. Zademonstrował też, że proponowane przez niego udoskonalenia prowadzą do mniejszych błędów szacowania istotnych parametrów diagnostycznych rzeczywistych sygnałów EKG. Opublikował wyniki swoich prac badawczych w recenzowanych artykułach. Stwierdzam w związku z tym, że kandydat spełnił wymagania Ustawy z 14 marca 2003 r. o stopniach naukowych i tytule naukowym... (Dz.U. Nr 65, poz. 595, z późn. zm.) i wnioskę o dopuszczenie rozprawy doktorskiej do publicznej obrony.

Dysertacja doktorska Tomasza Moronia wyróżnia się szerokim zakresem merytorycznej dyskusji oraz wnikliwością analizy stanu wiedzy na temat podjętego zagadnienia naukowego w kontekście jego praktycznych zastosowań, a także zwięzłością i kompletnością opisu wszystkich etapów przeprowadzonych badań. Wysoko oceniam intuicję jej autora, wkład intelektualny w opracowanie koncepcji udoskonalenia metod klasycznych oraz w planowanie i realizację eksperymentów demonstrujących walory jego oryginalnych rozwiązań.

Rudią Matuska

str. 4