RECENZJA ROZPRAWY DOKTORSKIEJ

Tytuł rozprawy: Statistical, anatomical shape modeling of tarsal bones

Autor rozprawy: mgr inż. Aleksandra Melińska
Promotor rozprawy: dr hab. inż. D. Robert Iskander
Ko-Promotor: dr hab. inż. Wiesław Śródka
Dziedzina: nauki techniczne
Dyscyplina: Biocybernetyka i Inżynieria Biomedyczna

Spersonalizowane modele struktur kostnych pacjenta wkraczają coraz szerzej do praktyki klinicznej, głównie w zabiegach chirurgicznych. Planowanie zabiegów, dopasowanie implantów to jedynie niektóre z zastosowań. Analiza modelu i jego opis parametryczny wspomóc mogą także diagnostykę medyczną w zakresie lokalizacji zmiany patologicznej. Generowanie modeli na podstawie różnych technik obrazowania trójwymiarowego (głównie tomografii komputerowej, rezonansu magnetycznego) wymaga zaawansowanych metod analizy i przetwarzania obrazów. Jedną z bardziej pracochłonnych czynności jest obrys zmiany na wielu przekrojach serii. Zautomatyzowanie procesu detekcji, z ewentualnym ograniczeniem udziału eksperta do wskazania regionu zainteresowań, znacząco skróci czas przygotowania modelu.

Recenzowana rozprawa doktorska prezentuje nowatorską metodę generowania modeli kości piętowej, skokowej, kuboidalnej oraz łódkowatej z ograniczeniem interakcji eksperta do wskazania punktów odniesienia. Opis geometrii kości za pomocą harmonik sferycznych, będących rozwiązaniem równania Laplace’a stanowi ważny i nie w pełni rozwiązany problemem opisu kształtu modeli oraz wspomaganiu diagnostyki zmian w strukturach kostnych.

Podjętą w rozprawie tematykę uważam za uzasadnioną, interesującą i aktualną dla współczesnych prac w dyscyplinie Biocybernetyki i Inżynierii Biomedycznej.
Autorka sformułowała następujący cel pracy (tłumaczenie z j. angielskiego):

„Celem pracy jest dostarczenie (ang. provide) dokładnego statystycznego modelu kształtu (atlasu) kości piętowej, skokowej, kuboidalnej oraz łódkowatej.

Praca obejmuje 93 strony podzielone na 4 rozdziały, poprzedzone spisem rysunków i tabel oraz przedmową. Bibliografia zawiera 176, dobrze dobranych i wykorzystanych, pozycji literaturowych, w tym pozycje autorskie lub współautorskie Doktorantki obejmujące 2 artykuły opublikowane w czasopismach indeksowanych w bazie JCR, 5 artykułów opublikowanych w innych czasopismach lub rozdziałach recenzowanych monografii oraz 6 prezentacji na konferencjach o zasięgu krajowym i międzynarodowym. Rozprawa jest napisana w języku angielskim.

Przedmowa, po krótkim wprowadzeniu, formuluje cel pracy oraz możliwe wykorzystanie modelu we wspomaganiu diagnostyki obrazowej oraz projektowaniu implantów oraz planowaniu zabiegu.

Rozdział pierwszy, będący wstępnem, zawiera opis anatomiczny kości stępu, krótką charakterystykę technik obrazowania, wybranych technik modelowania kształtu oraz prezentację wybranych prac z zakresu modelowania kształtu.


Rozdział trzeci przedstawia współczynniki SPHARM dla kości piętowej, skokowej, kuboidalnej oraz łódkowatej oraz ich analizę statystyczną. Zobowiązane także zebraną modele w w. kości. Jako przykład wykorzystanie klinicznego metody przedstawiono dekompozycję kości złamaną.

Rozdział czwarty podsumowuje wyniki pracy oraz wskazuje możliwe jej zastosowanie.

Kolejny, nienumerowany rozdział zawiera bogaty wykaz 176 publikacji.

W załączniku wypunktowano dorobek doktorantki, w tym 2 publikacje w czasopismach indeksowanych w bazie JCR, 4 publikacje w innych czasopismach oraz udział w projektach i współpracy z ośrodkami krajowymi i zagranicznymi.

Rozprawa zawiera elementy, które uznać można jako wkład Doktoranta w opracowanie metody generowania modelu i opis jego kształtu. Zaliczam do nich:
1. Zaproponowanie wieloetapowej metody generowania modelu kości oraz opisu kształtu obiektu z wykorzystaniem harmonik sferycznych. Metoda umożliwia ilościową analizę zmienności kształtu.

2. Wykorzystanie modelu w wizualizacji uszkodzeń kości.

Lektura rozprawy nasuwa także pewne uwagi o charakterze polemicznym lub dyskusyjnym, które niestety wpływają na ocenę całości pracy badawczej wykonanej przez Doktorantkę i przedstawionej w recenzowanej rozprawie doktorskiej.

1. Przetwarzanie wstępne, opisane w rozdziale 2.2.1 błędnie omawia generację obrazów strzałkowych. Skoro Autorka wykorzystuje dane zapisane zgodnie ze standardem DICOM, przekroje strzałkowe należy wygenerować dopasowując wymiar w osi Z do rozmiaru piksela o osiach X, Y.

2. W procesie segmentacji wykorzystano najprostszą z możliwych metod, jaką jest rozrost regionu z manualnie wyznaczonym punktem początkowym. Efektem działania algorytmu jest segmentacja obszaru, a nie kontur, jak to zostało podane na str. 36. Jaką metodą uzyskano kontur? Skoro celem tego etapu było wyznaczenie konturu, dlaczego nie wykorzystano np. aktywnych konturów, znacznie bardziej odpornych na nadsegmentację?

3. Jaki jest wpływ jakości segmentacji na opracowany model?


5. Definicja punktów odniesienia opisanych w rozdziale 2.2.4 wskazuje, że większość z nich może być w łatwy sposób znaleziona automatycznie. Dlaczego więc zaznaczano je manualnie? Jaka jest zmienność lokalizacji punktów? Dlaczego nie zaproponowano punktów anatomicznych, które pozwoliłyby na znacznie dokładniejsze dopasowanie poszczególnych obiektów?

6. Brak porównania z innymi metodami statystycznego modelowania kształtu.

Opis formalny jest matematycznie poprawny. Brak komentarzy utrudnia analizę metody generowania modelu.
Podsumowanie

Mgr inż. Aleksandra Melińska posiada odpowiednią wiedzę z zakresu technik cyfrowego przetwarzania obrazów. Przedstawiona do recenzji rozprawa zawiera sformułowany i rozwiązany problem badawczy oraz stanowi ciekawy wkład w dziedzinę przetwarzania danych biomedycznych zwłaszcza w zakresie opracowanie statystycznych modeli kości. Zawarta w pracy metodologia badań doprowadziła do realizacji postawionego celu jakim było opracowanie statystycznego modelu kształtu kości piętowej, skokowej, kuboidalnej oraz łódkowatej.

Cytowane prace źródłowe oraz wykaz własnych publikacji świadczą o bardzo dobrej znajomości przez Doktorantkę bieżącego stanu badań w obszarze, którego dotyczy rozprawa. Publikacje prac w czołowych czasopismach oraz współpraca z ośrodkami międzynarodowymi świadczą o dobrym poziomie prowadzonych przez Doktorantkę badań.

Sformułowany problem badawczy, jego realizacja oraz kompetencje Autorki skłaniają do postawienia wniosku o dopuszczenie mgr inż. Aleksandry Melińskiej do dalszych etapów przewodu doktorskiego.